Skip to main content
Log in

Deformation and fracture of mica-containing glass-ceramics in Hertzian contacts

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The Hertzian indentation response of a machinable mica-containing glass-ceramic is studied. Relative to the highly brittle base glass from which it is formed, the glass-ceramic shows evidence of considerable “ductility” in its indentation stress-strain response. Section views through the indentation sites reveal a transition from classical cone fracture outside the contact area in the base glass to accumulated subsurface deformation-microfracture in the glass-ceramic. The deformation is attributed to shear-driven sliding at the weak interfaces between the mica flakes and glass matrix. Extensile microcracks initiate at the shear-fault interfaces and propagate into the matrix, ultimately coalescing with neighbors at adjacent mica flakes to effect easy material removal. The faults are subject to strong compressive stresses in the Hertzian field, suggesting that frictional tractions are an important element in the micromechanics. Bend-test measurements on indented specimens show that the glass-ceramic, although weaker than its base glass counterpart, has superior resistance to strength degradation at high contact loads. Implications of the results in relation to microstructural design of glass-ceramics for optimal toughness, strength, and wear and fatigue properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. R. Howes and S. Tolansky, Proc. R. Soc. London A 230, 287–293 (1955).

    Article  CAS  Google Scholar 

  2. V.R. Howes and S. Tolansky, Proc. R. Soc. London A 230, 294–301 (1955).

    Article  CAS  Google Scholar 

  3. J.P. Tillett, Proc. Phys. Soc. London B 69, 47–54 (1956).

    Article  Google Scholar 

  4. F. C. Roesler, Proc. Phys. Soc. London B 69, 981 (1956).

    Article  Google Scholar 

  5. B.R. Lawn and H. Komatsu, Philos. Mag. 14, 689–699 (1966).

    Article  CAS  Google Scholar 

  6. F.C. Frank and B.R. Lawn, Proc. R. Soc. London A 299, 291–306 (1967).

    Article  Google Scholar 

  7. B.R. Lawn, J. Appl. Phys. 39, 4828–4836 (1968).

    Article  CAS  Google Scholar 

  8. F.B. Langitan and B.R. Lawn, J. Appl. Phys. 40, 4009–4017 (1969).

    Article  Google Scholar 

  9. F.B. Langitan and B.R. Lawn, J. Appl. Phys. 41, 3357–3365 (1970).

    Article  Google Scholar 

  10. M.V. Swain and B.R. Lawn, Phys. Status Solidi 35, 909–923 (1969).

    Article  CAS  Google Scholar 

  11. A.G. Mikosza and B.R. Lawn, J. Appl. Phys. 42, 5540–5545 (1971).

    Article  Google Scholar 

  12. T.R. Wilshaw, J. Phys. D: Appl. Phys. 4, 1567–1581 (1971).

    Article  Google Scholar 

  13. J. S. Nadeau, J. Am. Ceram. Soc. 56, 467–472 (1973).

    Article  CAS  Google Scholar 

  14. M.V. Swain, J.S. Williams, B.R. Lawn, and J.J.H. Beek, J. Mater. Sci. 8, 1153–1164 (1973).

    Article  CAS  Google Scholar 

  15. B.R. Lawn and T.R. Wilshaw, J. Mater. Sci. 10, 1049–1081 (1975).

    Article  Google Scholar 

  16. M.V. Swain and J.T. Hagan, J. Phys. D: Appl. Phys. 9, 2201–2214 (1976).

    Article  CAS  Google Scholar 

  17. A.G. Evans and T.R. Wilshaw, Acta Metall. 24, 939–956 (1976).

    Article  CAS  Google Scholar 

  18. B. R. Lawn and D. B. Marshall, in Fracture Mechanics of Ceramics, edited by R. C. Bradt, D. P. H. Hasselman, and F. F. Lange (Plenum, New York, 1978), Vol. 3, pp. 205–229.

  19. R. Warren, Acta Metall. 26, 1759–1769 (1978).

    Article  CAS  Google Scholar 

  20. B. R. Lawn, Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1993).

  21. H. Hertz, Hertz’s Miscellaneous Papers, Chaps. 5 and 6 (Macmillan, London, 1896).

  22. K. Zeng, K. Breder, and D.J. Rowcliffe, Acta Metall. 40, 2601–2605 (1992).

    Article  CAS  Google Scholar 

  23. J. S. Nadeau and A.S. Rao, J. Can. Ceram. Soc. 41, 63–67 (1972).

    CAS  Google Scholar 

  24. B. R. Lawn, T. R. Wilshaw, T. I. Barry, and R. Morrell, J. Mater. Sci. 10, 179–182 (1975).

    Article  CAS  Google Scholar 

  25. P. Chantikul, S. J. Bennison, and B. R. Lawn, J. Am. Ceram. Soc. 73, 2419–2427 (1990).

    Article  CAS  Google Scholar 

  26. H. Cai, N. P. Padture, B. M. Hooks, and B. R. Lawn, J. European Ceram. Soc. (in press).

  27. F. Deuerler, R. Knehans, and R. Steinbrech, in Science of Ceramics 13, Journal de Physique, Paris (1986), pp. C1-617-621.

  28. P. L. Swanson, C. J. Fairbanks, B. R. Lawn, Y-W. Mai, and B. J. Hockey, J. Am. Ceram. Soc. 70, 279–289 (1987).

    Article  CAS  Google Scholar 

  29. P. L. Swanson, in Fractography of Glasses and Ceramics (The American Ceramic Society, Westerville, OH, 1988), Vol. 22, pp. 135–155.

  30. E. K. Beauchamp and S. L. Monroe, J. Am. Ceram. Soc. 72, 1179–1184 (1989).

    Article  CAS  Google Scholar 

  31. P.F. Becher, J. Am. Ceram. Soc. 74, 255–269 (1991).

    Article  CAS  Google Scholar 

  32. F. Guiberteau, N.P. Padture, H. Cai, and B.R. Lawn, Philos. Mag. A 68, 1003–1016 (1993).

    Article  CAS  Google Scholar 

  33. F. Guiberteau, N. P. Padture, and B. R. Lawn, J. Am. Ceram. Soc. (in press).

  34. P.W. McMillan, Glass-Ceramics (Academic Press, London, 1979).

  35. C.K. Chyung, G.H. Beall, and D.G. Grossman, in Electron Microscopy and Structure of Materials, edited by G. Thomas, R. M. Fulrath, and R. M. Fisher (University of California Press, Berkeley, CA, 1972), pp. 1167–1194.

  36. K. Chyung, G. H. Beall, and D. G. Grossman, in Proceedings of 10th International Glass Congress, No. 14 (The Ceramic Society of Japan, Tokyo, Japan, 1974), pp. 33–40.

  37. K. Chyung, in Fracture Mechanics of Ceramics, edited by R. C. Bradt, D. P. H. Hasselman, and F. F. Lange (Plenum Press, New York, 1974), Vol. 2, pp. 495–508.

  38. G. H. Beall, in Advances in Nucleation and Crystallization in Glasses, edited by L. L. Hench and S. W. Freiman (The American Ceramic Society, Westerville, OH, 1972), pp. 251–261.

  39. T. Uno, T. Kasuga, and K. Nakajima, J. Am. Ceram. Soc. 74, 3139–3141 (1991).

    Article  CAS  Google Scholar 

  40. D. G. Grossman, in Proceedings of the International Symposium on Computer Restorations, edited by W. H. Mörmann (Quintessence Publishing Co., Chicago, IL, 1991), pp. 103–115.

  41. C.J. Fairbanks, B.R. Lawn, R.F. Cook, and Y-W. Mai, in Fracture Mechanics of Ceramics, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman, and F. F. Lange (Plenum, New York, 1986), Vol. 8, pp. 23–37.

  42. T.O. Mulhearn, J. Mech. Phys. Solids 7, 85–96 (1959).

  43. R.F. Cook, B.R. Lawn, and C.J. Fairbanks, J. Am. Ceram. Soc. 68, 604–615 (1985).

    Article  CAS  Google Scholar 

  44. D. Tabor, Hardness of Metals (Clarendon, Oxford, 1951).

  45. K. L. Johnson, Contact Mechanics (Cambridge University Press, London, 1985).

  46. J.J. Benbow, Proc. Phys. Soc. London 75, 697–699 (1960).

    Article  CAS  Google Scholar 

  47. J. S. Williams, B. R. Lawn, and M. V. Swain, Phys. Status Solidi A 2, 7–29 (1970).

    Article  CAS  Google Scholar 

  48. J. C. Jaeger and N. G. W. Cook, Fundamentals of Rock Mechanics (Chapman and Hall, London, 1971).

  49. M. S. Paterson, Experimental Rock Deformation-The Brittle Field (Springer-Verlag, Berlin, 1978).

  50. R. L. Kranz, Tectonophysics 100, 449–480 (1983).

    Article  Google Scholar 

  51. L.R. Myer, J.M. Kemeny, Z. Zheng, R. Suarez, R.T. Ewy, and N.G.W. Cook, Appl. Mech. Rev. 45, 263–280 (1992).

    Article  Google Scholar 

  52. S. van der Zwagg, J. T. Hagan, and J. E. Field, J. Mater. Sci. 15, 2965–2972 (1980).

    Article  Google Scholar 

  53. K-T. Wan, N. Aimard, S. Lathabai, R. G. Horn, and B. R. Lawn, J. Mater. Res. 5, 172–182 (1990).

    Article  CAS  Google Scholar 

  54. K-T. Wan and B.R. Lawn, Acta Metall. 38, 2073–2083 (1990).

    Article  CAS  Google Scholar 

  55. K-T. Wan, D.T. Smith, and B.R. Lawn, J. Am. Ceram. Soc. 75, 667–676 (1992).

    Article  CAS  Google Scholar 

  56. H. Horii and S. Namat-Nasser, J. Geophys. Res. 90, 3105–3125 (1985).

    Article  Google Scholar 

  57. M.F. Ashby and S.D. Hallam, Acta Metall. Mater. 34, 497–510 (1986).

    Article  CAS  Google Scholar 

  58. B. R. Lawn, N. P. Padture, F. Guiberteau, and H. Cai, Acta Metall, (in press).

  59. B. R. Lawn, N. P. Padture, L. M. Braun, and S. J. Bennison, J. Am. Ceram. Soc. 76, 2235–2240 (1993).

    Article  CAS  Google Scholar 

  60. N. P. Padture, J. L. Runyan, S. J. Bennison, L. M. Braun, and B. R. Lawn, J. Am. Ceram. Soc. 76, 2241–2247 (1993).

    Article  CAS  Google Scholar 

  61. H.Cai, M.A. Stevens Kalceff, and B.R. Lawn, J. Mater. Res. (unpublished research).

  62. S. Lathabai, J. Rödel, and B.R. Lawn, J. Am. Ceram. Soc. 74, 1340–1348 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, H., Kalceff, S.M.A. & Lawn, B.R. Deformation and fracture of mica-containing glass-ceramics in Hertzian contacts. Journal of Materials Research 9, 762–770 (1994). https://doi.org/10.1557/JMR.1994.0762

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.0762

Navigation