Skip to main content
Log in

On the role of ions in the formation of cubic boron nitride films by ion-assisted deposition

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have investigated how ion irradiation can selectively promote the formation of dense sp3-bonded cubic boron nitride (cBN) over the graphite-like sp2-bonded phases. We have conducted a series of experiments using ion-assisted pulsed laser deposition in which either the ion mass (mion) or ion energy (E) was varied in conjunction with the ratio of ion flux to depositing atom flux (J/a). For a fixed ion energy and mass, there is a critical J/a above which cBN formation is initiated, a window of J/a values in which large cBN percentages are obtained, and a point at which J/a is so large that the resputter and deposition rates balance and there is no net film deposition, in agreement with Kester and Messier. As do Kester and Messier, we find that cBN formation is controlled by a combination of experimental parameters that scale with the momentum of the ions. However, unlike Kester and Messier, we do not find that cBN formation scales with the maximum momentum that can be transferred in a single binary collision, as either incorrectly formulated by Targove and Macleod and used by Kester and Messier, or as correctly formulated. Instead we observe that cBN formation best scales with the total momentum of the incident ions, (mionE)1/2. We also consider the mechanistic origins of this (mionE)1/2 dependence. Computer simulations of the interaction of ions with BN show that cBN formation cannot be simply scaled to parameters such as the number of atomic displacements or the number of vacancies produced by the ion irradiation. A critical examination of the literature shows that none of the proposed models satisfactorily accounts for the observed (mionE)1/2 dependence. We present a quantitative model that describes the generation of stress during ion-assisted film growth. The model invokes a kinetic approach to defect production and loss. We apply a simplified version of the model to cBN synthesis, and find that it predicts an approximate (mionE)1/2 dependence for cBN formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Holleck, J. Vac. Sci. Technol. A 4, 2661 (1986).

    Article  CAS  Google Scholar 

  2. L. Vel, G. Demazeau, and J. Etourneau, Mater. Sci. Eng. B 10, 149 (1991).

    Article  Google Scholar 

  3. R. C. DeVries, GE CRD Report No. 72CRD178 (1972).

  4. S. P. S. Arya and A. D’Amico, Thin Solid Films 157, 267 (1988).

    Article  CAS  Google Scholar 

  5. W. A. Yarbrough, J. Vac. Sci. Technol. A 9, 1145 (1991).

    Article  CAS  Google Scholar 

  6. R. H. Wentorf, Jr., J. Chem. Phys. 36, 1990 (1962).

    Article  CAS  Google Scholar 

  7. O. Mishima, in Synthesis and Properties of Boron Nitride, edited by J. J. Pouch and S. A. Alterovitz (Trans Tech Publications, Ltd., Brookfield, 1990), Vol. 54–55, p. 313.

    Google Scholar 

  8. M. Murakawa and S. Watanabe, in Applications of Diamond Films and Related Materials, edited by Y. Tzeng, M. Yoshikawa, M. Murakawa, and A. Feldman (Elsevier, The Netherlands, 1991), p. 661.

    Google Scholar 

  9. J. C. Angus, Y. Wang, and M. Sunkara, Annu. Rev. Mater. Sci. 21, 221 (1991).

    Article  CAS  Google Scholar 

  10. hBN has been considered to be the thermodynamically stable phase at ambient conditions, but new work suggests that cBN may be the thermodynamically stable phase at ambient condition [see Nakano and Fukunaga, Diamond and Rel. Mater. 2, 1409 (1993), and V. L. Solozhenko, Thermochimican Acta 218, 221 (1993)]. The large activation energy barrier between ABN and cBN is said to account for the difficulty in synthesizing cBN at ambient conditions. Regardless of whether hBN or cBN is the equilibrium phase at ambient conditions, high pressures are required for bulk synthesis.

  11. W. Gissler, J. Haupt, T. A. Crabb, P. N. Gibson, and D. G. Rickerby, Mater. Sci. Eng. A 139, 284 (1991).

    Article  Google Scholar 

  12. T. Wada and N. Yamashita, J. Vac. Sci. Technol. A 10, 515 (1992).

    Article  Google Scholar 

  13. K. Inagawa, K. Watanabe, H. Ohsone, K. Saitoh, and A. Itoh, J. Vac. Sci. Technol. A 5, 2696 (1987).

    Article  CAS  Google Scholar 

  14. A. K. Ballal, L. Salamanca-Riba, G. L. Doll, C. A. Taylor II, and R. Clarke, J. Mater. Res. 7, 1618 (1992).

    Article  CAS  Google Scholar 

  15. A. K. Ballal, L. Salamanca-Riba, C. A. Taylor II, and G. L. Doll, Thin Solid Films 224, 46 (1993).

    Article  CAS  Google Scholar 

  16. T. A. Friedmann, W. M. Clift, H. A. Johnsen, E. J. Klaus, K. F. McCarty, D. L. Medlin, M. J. Mills, and D. K. Ottesen, in Laser Ablation in Materials Processing: Fundamentals and Applications, edited by B. Braren, J. J. Dubowski, and D. P. Norton (Mater. Res. Soc. Symp. Proc. 285, Pittsburgh, PA, 1993), p. 507.

  17. D. J. Kester and R. Messier, J. Appl. Phys. 72, 504 (1992).

    Article  CAS  Google Scholar 

  18. J. D. Targove and H. A. Macleod, Appl. Opt. 27, 3779 (1988).

    Article  CAS  Google Scholar 

  19. D. R. McKenzie, W. D. McFall, W. G. Sainty, C. A. Davis, and R. E. Collins, Diamond and Rel. Mater. 2, 970 (1993).

    Article  CAS  Google Scholar 

  20. N. Tanabe and M. Iwaki, Nucl. Instrum. Meth. B80/81, 1349 (1993).

    Article  Google Scholar 

  21. M. Okamoto, Y. Utsumi, and Y. Osaka, Plasma Sources Sci. Technol. 2, 1 (1993).

    Article  CAS  Google Scholar 

  22. H. Windischmann, J. Vac. Sci. Technol. A 9, 2431 (1991).

    Article  Google Scholar 

  23. T. A. Friedmann, P. B. Mirkarimi, D. L. Medlin, K. F. McCarty, E. J. Klaus, D. Boehme, H. A. Johnsen, M. J. Mills, and D. K. Ottesen, J. Appl. Phys. (in press).

  24. Given that the deposition flux is pulsed, the deposition rate, a, is a time averaged value. Since we are depositing only a small fraction of a monolayer (<0.1 Å) per laser pulse, and the ion-solid interactions occur primarily below the surface, the pulsed deposition source is essentially equivalent to a continuous source for the issues addressed here.

  25. D. V. Vechten, G. K. Hubler, and E. P. Donovan, Vacuum 36, 841 (1986).

    Article  Google Scholar 

  26. The ablated material should have energies of a few tens of eV based on a study of pyrolytic BN ablated in vacuum with comparable laser (248 nm) fluences (D. B. Geoghegan, personal communication); this is small compared to the 500–1200 eV ions used in this study. Also, whatever the energy of the ablated material, it is a constant effect independent of variations in ion energy, current, or mass. That is, neglecting the energy/momentum of the ablated species will not affect the differences used to distinguish between the various parametrizations of cBN formation.

  27. O. Burat, D. Bouchier, V. Stambouli, and G. Gautherin, J. Appl. Phys. 68, 2780 (1990).

    Article  CAS  Google Scholar 

  28. R. Geick, C. H. Penny, and G. Rupprecht, Phys. Rev. 146, 543 (1966).

    Article  CAS  Google Scholar 

  29. P. J. Gielisse, S. S. Mitra, J. N. Plendl, R. D. Griffis, L. C. Mansur, R. Marshall, and E. A. Pascoe, Phys. Rev. 155, 1039 (1967).

    Article  CAS  Google Scholar 

  30. D. R. McKenzie, D. Muller, and B. A. Pailthorpe, Phys. Rev. Lett. 67, 773 (1991).

    Article  CAS  Google Scholar 

  31. H. Windischmann, J. Appl. Phys. 62, 1800 (1987).

    Article  CAS  Google Scholar 

  32. P. Sigmund, in Sputtering by Particle Bombardment, edited by R. Behrisch (Springer, Berlin, 1981), Vol. 1, p. 49.

    Google Scholar 

  33. C. K. Hwangbo, L. Lingg, J. P. Lehan, H. A. Macleod, J. L. Makous, and S. Y. Kim, Appl. Opt. 28, 2769 (1989).

    Article  CAS  Google Scholar 

  34. D. Nir, J. Vac. Sci. Technol. A 4, 2954 (1986).

    Article  Google Scholar 

  35. B. Window, J. Vac. Sci. Technol. A 7, 3036 (1989).

    Article  CAS  Google Scholar 

  36. C. A. Davis, Thin Solid Films 226, 30 (1993).

    Article  CAS  Google Scholar 

  37. H. Windischmann, Crit. Rev. Solid State 17, 547 (1992).

    Article  Google Scholar 

  38. C Weissmantel, J. Vac. Sci. Technol. 18, 179 (1981).

    Article  CAS  Google Scholar 

  39. F. Seitz and J. S. Koehler, in Progress in Solid State Physics (Academic Press, New York, 1954), Vol. 2, p. 30.

    Google Scholar 

  40. M. Nastasi and J. W. Mayer, Mater. Sci. Rep. 6, 1 (1991).

    Article  Google Scholar 

  41. Y. Lifshitz, S. R. Kasi, and J. W. Rabalais, Phys. Rev. B 41, 10468 (1990).

    Article  CAS  Google Scholar 

  42. J. Robertson, Diamond and Rel. Mater. 2, 984 (1993).

    Article  CAS  Google Scholar 

  43. H. J. Steffen, D. Marton, and J. W. Rabalais, Phys. Rev. Lett. 68, 1726 (1992).

    Article  CAS  Google Scholar 

  44. J. Koike, D. M. Parkin, and T. E. Mitchell, Appl. Phys. Lett. 60, 1450 (1992).

    Article  CAS  Google Scholar 

  45. T. Ikeda, T. Satou, and H. Satoh, Surf. Coatings and Technol. 50, 33 (1991).

    Article  CAS  Google Scholar 

  46. D. L. Medlin, T. A. Friedmann, P. B. Mirkarimi, K. F. McCarty, and M. J. Mills, in Phase Transformations in Thin FilmsThermodynamics and Kinetics, edited by M. Atzmon, A. L. Greer, J. M. E. Harper, and M. R. Libera (Mater. Res. Soc. Symp. Proc. 311, Pittsburgh, PA 1993).

  47. D. L. Medlin, T. A. Friedmann, P. B. Mirkarimi, P. Rez, K. F. McCarty, and M. J. Mills, J. Appl. Phys. (in press).

  48. D. R. McKenzie, D. J. H. Cockayne, D. A. Muller, M. Murakawa, S. Miyake, S. Wantanabe, and P. Fallon, J. Appl. Phys. 70, 3007 (1991).

    Article  CAS  Google Scholar 

  49. D. J. Kester, K. S. Ailey, R. F. Davis, and K. L. More, J. Mater. Res. 8, 1213 (1993).

    Article  CAS  Google Scholar 

  50. S. Shanfield and R. Wolfson, J. Vac. Sci. Technol. A 1, 323 (1983).

    Article  CAS  Google Scholar 

  51. J. F. Ziegler, J. P. Biersak, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).

    Google Scholar 

  52. N. V. Doan and F. Rossi, Solid State Phenomena 30 & 31, 75 (1993).

    Google Scholar 

  53. G. H. Kinchin and R. S. Pease, Rept. Progr. Phys. 18, 1 (1955).

    Article  Google Scholar 

  54. D. R. McKenzie, D. A. Muller, E. Kravtchinskaia, D. Segal, D. J. H. Cockayne, G. Amaratunga, and R. Silva, Thin Solid Films 206, 198 (1991).

    Article  CAS  Google Scholar 

  55. J. Koskinen, J. Appl. Phys. 63, 2094 (1988).

    Article  CAS  Google Scholar 

  56. J. Ishikawa, Y. Takeiri, K. Ogawa, and T. Takagi, J. Appl. Phys. 61, 2509 (1987).

    Article  CAS  Google Scholar 

  57. C. Weissmantel, Thin Solid Films 92, 55 (1982).

    Article  CAS  Google Scholar 

  58. R. C. DeVries, in Diamond and Diamond-Like Films and Coatings, edited by R. E. Clausing (Plenum Press, New York, 1991), p. 151.

    Chapter  Google Scholar 

  59. R. S. Daley, L. J. Terminello, P. B. Mirkarimi, and K. F. McCarty, unpublished.

  60. While ion energy is also lost to phonons and ionization events, in the context of the model the important pathway for energy loss is to defect production.

  61. See, for example, A. D. Brailsford and R. Bullough, J. Nucl. Mater. 44, 121 (1972).

    Article  CAS  Google Scholar 

  62. W. G. Wolfer and A. Si-Ahmed, J. Nucl. Mater. 99, 117 (1981).

    Article  CAS  Google Scholar 

  63. In a constrained film, the stress is biaxial. However, in order to potentially compare with a thermodynamic pressure (p), we give the hydrostatic stress σH = 1/3(σ11 + σ22 + σ33) = −p, where σii are the diagonal components of the stress tensor.

  64. W. G. Wolfer, J. Phys. F (Metal Phys.) 12, 425 (1982).

    Article  CAS  Google Scholar 

  65. P. Eberhardt, in Conf. on Dimensional Stability and Mechanical Behavior of Irradiated Metals and Alloys in London (British Nucl. Energy Society, 1983).

  66. H. J. Wollenberger, in Vacancies and Interstitials in Metals, edited by A. Seeger, D. Schumacher, W. Schilling, and J. Diehl (North-Holland, Amsterdam, 1970), p. 215.

    Google Scholar 

  67. A. Barbu and G. Martin, Solid State Phenomena 30 & 31, 179 (1993).

    Google Scholar 

  68. P. A. Thrower and R. M. Mayer, Phys. Status Solidi 47, 11 (1978).

    Article  CAS  Google Scholar 

  69. D. S. Williams, J. Appl. Phys. 57, 2340 (1985).

    Article  CAS  Google Scholar 

  70. W. A. Johnson, J. Vac. Sei. Technol. B 1, 257 (1987).

    Article  Google Scholar 

  71. American Institute of Physics Handbook, edited by D. E. Gray (McGraw-Hill, New’ York, 1982).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirkarimi, P.B., McCarty, K.F., Medlin, D.L. et al. On the role of ions in the formation of cubic boron nitride films by ion-assisted deposition. Journal of Materials Research 9, 2925–2938 (1994). https://doi.org/10.1557/JMR.1994.2925

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.2925

Navigation