Skip to main content
Log in

Molecular beam homoepitaxial growth of MgO(001)

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We describe homoepitaxial growth and detailed in situ characterization of MgO(001). We have used, for the first time, high-speed Auger electron spectroscopy as a real-time probe of film composition during growth. Excellent short-range and long-range crystallographic order are achieved in films grown to a thickness of several hundred angstroms in the substrate temperature range of 450 °C to 750 °C. Moreover, the films become more laminar as the growth temperature increases, suggesting that MgO grows homoepitaxially by the step-flow growth mechanism at elevated temperature. The surfaces of films grown at 650°and 750 °C are smoother than those obtained by cleaving MgO(001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Bando, S. Horii, and T. Takada, Jpn. J. Appl. Phys. 17, 1037 (1978).

    Article  CAS  Google Scholar 

  2. T. Shigematsu, H. Ushigome, T. Bando, and T. Takada, J. Cryst. Growth 50, 801 (1980).

    Article  CAS  Google Scholar 

  3. T. Terashima and Y. Bando, J. Appl. Phys. 56, 3445 (1984).

    Article  CAS  Google Scholar 

  4. T. Terashima and Y. Bando, Thin Solid Films 152, 455 (1987).

    Article  CAS  Google Scholar 

  5. Y. Gao, K. L. Merkle, H. L. M. Chang, T. J. Zhang, and D. J. Lam, in Heteroepitaxy of Dissimilar Materials, edited by R. F. C. Farrow, J. P. Harbison, P. S. Peercy, and A. Zangwill (Mater. Res. Soc. Symp. Proc. 221, Pittsburgh, PA, 1991), p. 59.

  6. Y. Gao, G. Bai, K. L. Merkle, Y. Shi, H. L. M. Chang, Z. Shen, and D. J. Lam, J. Mater. Res. 8, 145 (1993).

    Article  CAS  Google Scholar 

  7. H. You, H. L. M. Chang, R. P. Chiarello, and D. J. Lam, in Heteroepitaxy of Dissimilar Materials, edited by R. F. C. Farrow, J. P. Harbison, P. S. Peercy, and A. Zangwill (Mater. Res. Soc. Symp. Proc. 221, Pittsburgh, PA, 1991), p. 181.

  8. M. Yamamoto, H. Fukumoto, and Y. Osaka, in Heteroepitaxy of Dissimilar Materials, edited by R. F. C. Farrow, J. P. Harbison, P. S. Peercy, and A. Zangwill (Mater. Res. Soc. Symp. Proc. 221, Pittsburgh, PA, 1991), p. 35.

  9. J. R. Booth, W. D. Kingery, and H. K. Bowen, J. Cryst. Growth 29, 257 (1975).

    Article  CAS  Google Scholar 

  10. S. Yadavalli, M. H. Yang, and C. P. Flynn, Phys. Rev. B 41, 7961 (1990).

    Article  CAS  Google Scholar 

  11. H. H. Rung, Transition Metal Oxides: Surface Chemistry and Catalysis (Elsevier Publishers, New York, 1989).

    Google Scholar 

  12. C. Duriez, C. Chapon, C. R. Henry, and J. M. Rickard, Surf. Sci. 230, 123 (1990).

    Article  CAS  Google Scholar 

  13. J. B. Zhou, H. C. Lu, T. Gustafsson, and P. Haberle, Surf. Sci. 302, 350 (1994).

    Article  CAS  Google Scholar 

  14. S. S. Kim, S. Baik, H. W. Kim, and C. Y. Kim, Surf. Sci. Lett. 294, L935 (1993).

    CAS  Google Scholar 

  15. S. Varma, X. Chen, I. Davoli, J. Zhang, D. K. Saldin, and B. P. Tonner, Surf. Sci. 314, 145 (1994).

    Article  CAS  Google Scholar 

  16. V. E. Henrich and P. A. Cox, Appl. Surf. Sci. 72, 277 (1993).

    Article  CAS  Google Scholar 

  17. V. E. Henrich, and P. A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  18. M-C. Wu, J. S. Corneille, C. A. Estrada, J-W. He, and D. W. Goodman, Chem. Phys. Lett. 182, 472 (1991).

    Article  CAS  Google Scholar 

  19. S. A. Chambers, I. M. Vitomirov, S. B. Anderson, H. W. Chen, T. J. Wagener, and J. H. Weaver, Superlattices and Microstructures 3, 563 (1987).

    Article  CAS  Google Scholar 

  20. W. F. Egellhoff, Jr., Crit. Rev. Solid State and Mater. Sci. 16, 213 (1990).

    Article  Google Scholar 

  21. S. A. Chambers, Adv. Phys. 40, 357 (1991).

    Article  CAS  Google Scholar 

  22. For detailed discussions of XPD and AED in MgO(001), see Ref. 15, plus S. A. Chambers and T. T. Tran, Surf. Sci. Lett. 314, L867 (1994); T. T. Tran and S. A. Chambers, Appl. Surf. Sci. (1994).

    Article  CAS  Google Scholar 

  23. R. C. McCune and P. Wynblatt, J. Am. Ceram. Soc. 66, 111 (1983).

    Article  CAS  Google Scholar 

  24. D. J. Friedman and C. S. Fadley, J. Electr. Spectros. Rel. Phenom. 51, 689 (1990).

    Article  CAS  Google Scholar 

  25. For an excellent and detailed discussion of growth modes in MBE, see J. Y. Tsao, Materials Fundamentals of Molecular Beam Epitaxy (Academic Press, San Diego, CA, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chambers, S.A., Tran, T.T. & Hileman, T.A. Molecular beam homoepitaxial growth of MgO(001). Journal of Materials Research 9, 2944–2952 (1994). https://doi.org/10.1557/JMR.1994.2944

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.2944

Navigation