Skip to main content
Log in

Elastic constants of single crystal γ – TiAl

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The six independent second-order elastic stiffness coefficients of a Ti44Al56 single crystal (L10 structure) have been measured at room temperature for the first time using a resonant ultrasonic spectroscopy (RUS) technique. These data were used to calculate the orientation dependence of Young’s modulus and the shear modulus. Young’s modulus is found to reach a maximum near a [111] direction, close to the normal to the most densely packed planes. The elastic moduli and Poisson’s ratio for polycrystalline materials, calculated by the averaging scheme proposed by Hill, are in good agreement with experimental data and theoretical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Fleischer, J. Mater. Sci. 22, 2281 (1987).

    Article  CAS  Google Scholar 

  2. A. I. Taub and R. L. Fleischer, Science 243, 616 (1989).

    Article  CAS  Google Scholar 

  3. Y. W. Kim, JOM 41 (7), 24 (1989).

    Article  CAS  Google Scholar 

  4. Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, edited by P. Villars and L. D. Calvert (American Society for Metals, Metals Park, OH, 1985), Vol. 2.

  5. Y. W. Kim and D. M. Dimiduk, JOM 43 (8), 40 (1991).

    Article  CAS  Google Scholar 

  6. R. P. Elliot and W. Rostoker, Acta Metall. 2, 884 (1954).

    Article  Google Scholar 

  7. D. Vujic, Z. Li, and S. H. Whang, Metall. Trans. A 19A, 2445 (1988).

    Article  CAS  Google Scholar 

  8. F. H. Froes, C. Suryanarayana, and D. Eliezer, J. Mater. Sci. 27, 5113 (1992).

    Article  CAS  Google Scholar 

  9. Y. W. Kim, JOM 46 (7), 30 (1994).

    Article  CAS  Google Scholar 

  10. T. Kawabata, T. Kanai, and O. Izumi, Acta Metall. 33, 1355 (1985).

    Article  CAS  Google Scholar 

  11. C. L. Fu and M.H. Yoo, Philos. Mag. Lett. 62, 159 (1990).

    Article  CAS  Google Scholar 

  12. K. Y. Kim, Phys. Rev. B 49, 3713 (1994).

    Article  CAS  Google Scholar 

  13. D. B. Fraser and R. C. LeCraw, Rev. Sci. Instrum. 35, 1113 (1964).

    Article  CAS  Google Scholar 

  14. H. H. Demarest, Jr., J. Acoust. Soc. Am. 49, 768 (1969).

    Article  Google Scholar 

  15. I. Ohno, J. Phys. Earth 24, 355 (1976).

    Article  CAS  Google Scholar 

  16. A. Migliori, J. L. Sarrao, W. M. Visscher, T. M. Bell, M. Lei, Z. Fisk, and R. G. Leisure, Physica B 183, 1 (1993).

    Article  CAS  Google Scholar 

  17. H. Yasuda and M. Koiwa, J. Phys. Chem. Solids 52, 723 (1991).

    Article  CAS  Google Scholar 

  18. H. Yasuda, T. Takasugi, and M. Koiwa, Acta Metall. Mater. 40, 381 (1992).

    Article  CAS  Google Scholar 

  19. K. Tanaka, H. Yasuda, and M. Koiwa, Proc. 3rd Japan Int. SAMPE Symp. 1171 (1993).

    Google Scholar 

  20. F. Chu, M. Lei, A. Migliori, S. P. Chen, and T. E. Mitchell, Philos. Mag. B 70, 867 (1994).

    Article  CAS  Google Scholar 

  21. F. Chu, M. Lei, S. A. Maloy, T. E. Mitchell, A. Migliori, and J. Garrett, Philos. Mag. B (1995, in press).

    Google Scholar 

  22. V-T. Kuokkala and R.B. Schwarz, Rev. Sci. Instrum. 63, 3136 (1992).

    Google Scholar 

  23. W. L. Johnson, S. J. Norton, F. Bendec, and R. Pless, J. Acoust. Soc. Am. 91, 2637 (1992).

    Article  Google Scholar 

  24. W. M. Visscher, Los Alamos Report, LA-UR-91-2884 (1991).

    Google Scholar 

  25. S. R. Srinivasan and R. B. Schwarz, J. Mater. Res. 7, 1610 (1992).

    Article  CAS  Google Scholar 

  26. P. B. Desch and R. B. Schwarz, unpublished results, Los Alamos National Laboratory.

  27. A. Kelly and N. H. MacMillan, Strong Solids, 3rd ed. (Oxford University Press, Oxford, 1986), p. 395.

  28. R. L. Bisplinghoff, J.W. Mar, and T. H. H. Pian, Statics of Deformable Solids (Addison-Wesley, Reading, MA, 1965), Chap. 7.

  29. B.A. Auld, Acoustic Fields and Waves in Solids (John Wiley & Sons, New York, 1973), Vol. 1, Chap. 3.

  30. O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963).

    Article  CAS  Google Scholar 

  31. G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregated Properties: A Handbook, 2nd ed. (The MIT Press, Cambridge, MA, 1971).

    Google Scholar 

  32. E. Schreiber, O.L. Anderson, and N. Soga, in Elastic Constants and Their Measurement (McGraw-Hill, New York, 1973), pp. 29-31.

  33. A. Lipsitt, D. Schechtman, and R. E. Schafrik, Metall, Trans. A 6, 1991 (1975).

    Google Scholar 

  34. E. Schafrik, Metall. Trans. A 8, 1003 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Schwarz, R.B., Migliori, A. et al. Elastic constants of single crystal γ – TiAl. Journal of Materials Research 10, 1187–1195 (1995). https://doi.org/10.1557/JMR.1995.1187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.1187

Navigation