Skip to main content
Log in

The relationship between indentation and uniaxial creep in amorphous selenium

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ultralow load indentation techniques can be used to obtain time-dependent mechanical properties, termed indentation creep, of materials. However, the comparison of indentation creep data to that obtained during conventional creep testing is difficult, mainly due to the determination of the strain rate experienced by the material during indentation. Using the power-law creep equation and the equation for Newtonian viscosity as a function of stress and strain rate, a relationship between indentation strain rate, and the effective strain rate occurring during the indentation creep process is obtained. Indentation creep measurements on amorphous selenium in the Newtonian viscous flow regime above the glass transition temperature were obtained. The data were then used to determine that the coefficient relating indentation strain rate to the effective strain rate is equal to 0.09, or.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.R. Brotzen, Int. Mater. Rev. 39 (1), 24 (1994).

    Article  CAS  Google Scholar 

  2. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  3. M.J. Mayo and W.D. Nix, Acta Metall. 36 (8), 2183 (1988).

    Article  CAS  Google Scholar 

  4. V. Raman and R. Berriche, J. Mater. Res. 7, 627 (1992).

    Article  CAS  Google Scholar 

  5. Β.Ν. Lucas and W.C. Oliver, in Thin Films: Stresses and Mechanical Properties III, edited by W. D. Nix, J. C. Bravman, E. Arzt, and L. B. Freund (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 337.

  6. B. Roebuck and E. A. Almond, J. Mater. Sci. Lett. 1, 519 (1982).

    Article  CAS  Google Scholar 

  7. P.M. Sargent and M.F. Ashby, Mater. Sci. Technol. 8, 594 (1993).

    Google Scholar 

  8. S.N.G. Chu and J.C. M. Li, J. Mater. Sci. 12, 2200 (1977).

    Article  CAS  Google Scholar 

  9. S.N.G. Chu and J.C. M. Li, Mater. Sci. Eng. 39, 1 (1979).

    Article  CAS  Google Scholar 

  10. W-T. Han and M. Tomozawa, J. Am. Ceram. Soc. 73 (12), 3626 (1990).

    Article  CAS  Google Scholar 

  11. N.M. Keulen, J. Am. Ceram. Soc. 76 (4), 904 (1993).

    Article  CAS  Google Scholar 

  12. D. Tabor, The Hardness of Metals (Clarendon Press, Oxford, 1951).

    Google Scholar 

  13. H. M. Pollock, D. Maugis, and M. Barquins, in Microindentation Techniques in Materials Science and Engineering, ASTM STP 889, edited by P.J. Blau and B.R. Lawn (ASTM, Philadelphia, PA, 1986), p. 47.

    Google Scholar 

  14. A. G. Atkins, A. Silvério, and D. Tabor, J. Inst. Metals 94, 369 (1966).

    CAS  Google Scholar 

  15. T.O. Mulhearn and D. Tabor, J. Inst. Metals 89, 7 (1960).

    CAS  Google Scholar 

  16. A. De La Torre, P. Adeva, and M. Aballe, J. Mater. Sci. 26, 4351 (1991).

    Article  Google Scholar 

  17. A. Juhasz, P. Tasnadi, and I. Kovacs, J. Mater. Sci. Lett. 5, 35 (1986).

    Article  CAS  Google Scholar 

  18. F.O. Muktepavel and I. Manika, J. Mater. Sci. Lett. 8, 4 (1989).

    Article  CAS  Google Scholar 

  19. A.L. Yurkov, J. Mater. Sci. Lett. 12, 767 (1993).

    Article  CAS  Google Scholar 

  20. W. W. Walker, in The Science of Hardness Testing and its Research Applications, edited by J. H. Westbrook and H. Conrad (American Society for Metals, Metals Park, OH, 1973), p. 258.

    Google Scholar 

  21. M.J. Mayo, R.W. Siegel, A. Narayanasamy, and W.D. Nix, J. Mater. Res. 5, 1073 (1990).

    Article  CAS  Google Scholar 

  22. W. B. Li and R. Warren, Acta Metall. et Mater. 41 (10), 3065 (1993).

    Article  CAS  Google Scholar 

  23. W. B. Li, J. L. Henshall, R. M. Hooper, and Κ. Ε. Easterling, Acta Metall. et Mater. 39 (12), 3099 (1991).

    Article  CAS  Google Scholar 

  24. W. R. LaFontaine, B. Yost, R. D. Black, and C-Y. Li, J. Mater. Res. 5, 2100 (1990).

    Article  CAS  Google Scholar 

  25. T.W. Wu, M. Moshref, and P.S. Alexopoulos, Thin Solid Films 187, 295 (1990).

    Article  CAS  Google Scholar 

  26. H. J. Frost and M. F. Ashby, Deformation-Mechanism Maps (Pergamon Press, Oxford, 1982).

    Google Scholar 

  27. D.M. Marsh, Proc. R. Soc. London A279, 420 (1964).

    Google Scholar 

  28. K.L. Johnson, J. Mech. Phys. Solids 18, 115 (1970).

    Article  Google Scholar 

  29. M.J. Mayo, R.W. Siegel, Y.X. Liao, and W.D. Nix, J. Mater. Res. 7, 973 (1992).

    Article  CAS  Google Scholar 

  30. H. Y. Yu and J.C.M. Li, J. Mater. Sci. 12, 2214 (1977).

    Article  CAS  Google Scholar 

  31. R. Hill, Proc. R. Soc. London A436, 617 (1992).

    Google Scholar 

  32. A. F. Bower, N. A. Fleck, A. Needleman, and N. Ogbonna, Proc. R. Soc. London A441, 97 (1993).

    Google Scholar 

  33. B. Storåkers and P. Larsson, J. Mech. Phys. Solids 42 (2), 307 (1994).

    Article  Google Scholar 

  34. J.R. Matthews, Acta Metall. 28, 311 (1980).

    Article  CAS  Google Scholar 

  35. S.P. Timoshenko and J.N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970).

    Google Scholar 

  36. M. Cukierman and D. R. Uhlmann, J. Non-Cryst. Solids 12, 199 (1973).

    Article  CAS  Google Scholar 

  37. A. Eisenberg and A. V. Tobolsky, J. Polymer Sci. 61, 483 (1962).

    Article  CAS  Google Scholar 

  38. L.J. Graham and R. Chang, J. Appl. Phys. 36 (10), 2983 (1965).

    Article  CAS  Google Scholar 

  39. S.O. Kasap, S. Yannacopoulos, and P. Gundappa, J. Non-Cryst. Solids 111, 82 (1989).

    Article  CAS  Google Scholar 

  40. S.O. Kasap, V. Aiyah, and S. Yannacopoulos, J. Phys. D 23, 553 (1990).

    Article  CAS  Google Scholar 

  41. R.B. Stephens, J. Appl. Phys. 49 (12), 5855 (1978).

    Article  CAS  Google Scholar 

  42. M.C. Coughlin and B. Wunderlich, J. Polymer Sci.: Polymer Phys. 11, 1735 (1973).

    CAS  Google Scholar 

  43. V.E. Jenckel, Kolloid-Zeitschrift 84, 266 (1938).

    Article  CAS  Google Scholar 

  44. K. Vedam, D. Miller, and R. Roy, J. Appl. Phys. 37 (9), 3432 (1966).

    Article  CAS  Google Scholar 

  45. W. C. Oliver, B.N. Lucas, and G. M. Pharr, in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, edited by M. Nastasi, D. Parkin, and M. Gleiter (Kluwer Academic, Dordrecht, The Netherlands, 1993), p. 417.

    Chapter  Google Scholar 

  46. H. Scholze and N. J. Kreidl, in Glass Science and Technology, Volume 3: Viscosity and Relaxation, edited by D. R. Uhlmann and N.J. Kreidl (Academic Press, Orlando, FL, 1986), p. 233.

    Chapter  Google Scholar 

  47. J.H. Li and D.R. Uhlmann, J. Non-Cryst. Solids 3, 127 (1970).

    Article  Google Scholar 

  48. J.H. Simmons, R. Ochoa, K. D. Simmons, and J.J. Mills, J. Non-Cryst. Solids 105, 313 (1988).

    Article  CAS  Google Scholar 

  49. S. S. Chiang, D. B. Marshall, and A. G. Evans, J. Appl. Phys. 53 (1), 298 (1982).

    Article  CAS  Google Scholar 

  50. W. Hirst and G. Howse, Proc. R. Soc. London A311, 429 (1969).

    Google Scholar 

  51. A. K. Bhattacharya and W.D. Nix, Int. J. Solids and Structures 27 (8), 1047 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poisl, W.H., Oliver, W.C. & Fabes, B.D. The relationship between indentation and uniaxial creep in amorphous selenium. Journal of Materials Research 10, 2024–2032 (1995). https://doi.org/10.1557/JMR.1995.2024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.2024

Navigation