Skip to main content
Log in

Principles of the development of a silica dielectric for microelectronics packaging

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Recognizing that speed, size, reliability, and cost are the principal driving forces for advanced electronic packages, this review article describes the much needed development of a new, phase transformation-free, single-phase silica dielectric with a dielectric constant (k) of about 4, the lowest among the inorganic oxides, and a coefficient of thermal expansion (CTE) of about 3 ppm/°C, similar to that of Si. This dielectric, consisting largely of SiO2, represents a gain in media speed by about 50% over alumina dielectric, combined with an improvement in reliability of the package by a factor of about 1000. The feature size and system cost can also be drastically reduced by using this dielectric. It is made from a mixture of binary borosilicate glasses that normally exhibit an undesirable characteristic of precipitating cristobalite during sintering that severely weakens the structure. The most important aspect of this article is the design and development of a strategy that prevents the cristobalite growth by incorporating a crystal growth inhibitor in the binary mixture of glasses. Since kinetics, not thermodynamics, are shown to be the key to success of this strategy, the roles of rate-controlling parameters are deliberately emphasized. A working model is delineated to identify compositions that yield a cristobalite-free silica dielectric with values of CTE that match those of Si and GaAs. Critical issues of co-firing between metals and this dielectric are addressed within the context of multilayer packaging fabrication. Finally, a list of measured properties is presented that clearly shows new opportunities for this silica dielectric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. K. Gupta, Int. J. Microcirct. Elect. Packaging, 17 1, First Qtr., pp 80–97 (1994).

    Google Scholar 

  2. R. R. Tummala, in Microelectronics Packaging Handbook, edited by R. R. Tummala and E.J. Rymaszewski (Van Nostrand Reinhold, New York, 1989), Chap. 7.

  3. J. I. Steinberg, S. J. Horowitz, and R. J. Bacher, in Advances in Ceramics, Vol. 19, Multilayer Ceramic Devices, edited by J. B. Blum and W.R. Cannon (Am. Ceram. Soc. Inc., Westerville, OH, 1986), pp. 31–39.

  4. W. D. Kingery, H.K. Bowen, and D.R. Uhlmann, in Introduction to Ceramics (John Wiley & Sons, New York, 1976), Chaps. 2–3 and 17–18.

  5. K. Kata, Y. Shimada, and H. Takamizawa, IEEE Trans. CHMT, 13 (2), 448–451 (1990).

    Google Scholar 

  6. T. K. Gupta, J. H. Bechtold, R. C. Kuznicki, L.H. Kadoff, and B. R. Rossing, J. Mater. Sci. 12, 2421–2426 (1977).

    Article  CAS  Google Scholar 

  7. J-H. Jean and T.K. Gupta, J. Mater. Res. 9, 486–492 (1994).

    Article  CAS  Google Scholar 

  8. J-H. Jean and T.K. Gupta, J. Mater. Res. 7, 3342–3347 (1992).

    Article  CAS  Google Scholar 

  9. J-H. Jean and T. K. Gupta, J. Mater. Res. 7, 3103–3111 (1992); in Nucleation and Crystallization in Liquids and Glasses, edited by M.C. Weinberg, Ceram. Trans. 30, 347–354 (1993).

    Article  Google Scholar 

  10. N. G. Ainslie, C.R. Morelock, and D. Turnbull, in Symposium on Nucleation and Crystallization in Glasses and Melts (Am. Ceram. Soc., Westerville, OH, 1962), p. 97.

  11. F. E. Wagstaff, S.D. Brown, and I.B. Cutler, Phys. Chem. Glasses 5, 76 (1964).

    CAS  Google Scholar 

  12. F. E. Wagstaff, J. Am. Ceram. Soc. 52, 650 (1969).

    Article  CAS  Google Scholar 

  13. D. R. Uhlmann, in Advances in Nucleation and Crystallization in Glasses, edited by L.L. Hench and S. W. Freiman (Am. Ceram. Soc., Westerville, OH, 1971), p. 91.

    Google Scholar 

  14. M. Avrami, J. Chem. Phys. 7, 1103 (1939); 8, 212 (1940); 9, 177 (1941).

    CAS  Google Scholar 

  15. W. Espe, in Materials of High Vacuum Technology (Pergamon Press, Oxford, 1968), Vol. 2, Chap. 10.

  16. S. M. Cox and P.L. Kirby, Nature (London) 159, 162 (1947).

    Article  CAS  Google Scholar 

  17. G. H. Frischat, in Ionic Diffusion in Oxide Glasses (Trans. Tech., Bay Village, OH, 1975), pp. 138 and 147.

  18. T. K. Gupta and J-H. Jean, J. Mater. Res. 9, 999–1005 (1994).

    Article  CAS  Google Scholar 

  19. J-H. Jean and T.K. Gupta, J. Mater. Res. 8, 356–363 (1993).

    Article  CAS  Google Scholar 

  20. J-H. Jean and T. K. Gupta, J. Am. Ceram. Soc. 76 (8), 2010–2016 (1993); J. Mater. Res. 8, 1767–1769 (1993).

    CAS  Google Scholar 

  21. W. Tie, G. Fangtian, Z. Ao, Z. Yongzi, Z. Hiaoxing, and Q. Li, in Collected Papers: XIV Int. Cong. on Glass (Ind. Ceram. Soc., Calcutta, India, 1986), Vol. 1, p. 374.

    Google Scholar 

  22. Y. Imanaka, S. Aoki, N. Kamehara, and K. Niwa, J. Ceram. Soc. Jpn. Int. Ed. 95, 1066–1068 (1987); J. Fujitsu Sci. Tech. 25, 73–79 (1989).

    Google Scholar 

  23. J. F. MacDowell, Alumina Science and Technology Handbook, (Am. Ceram. Soc., Westerville, OH, 1990), p 365.

  24. J-H. Jean and T. K. Gupta, J. Mater. Res. 7, 2514–2520 (1992).

    Article  CAS  Google Scholar 

  25. R. B. Sosman, in Phases of SiO2 (Rutgers Univ. Press., New Brunswick, NJ, 1965), pp. 121–147.

    Google Scholar 

  26. R. W. Grimshaw, J. Hargreaves, and A. L. Roberts, Trans. Brit. Ceram. Soc. 55, 36–56 (1956).

    Google Scholar 

  27. J-H. Jean and T. K. Gupta, J. Mater. Res. 10, 1312–1320 (1995); J. Am. Ceram. Soc. 76 (3), 751–753 (1993).

    Article  Google Scholar 

  28. J-H. Jean and T. K. Gupta, J. Mater. Res. 8, 2393–2399 (1993).

    Article  CAS  Google Scholar 

  29. M. B. Volf, in Chemical Approach to Glasses (Elsevier, New York, 1984), p. 416.

  30. J-H. Jean and T. K. Gupta, in Materials in Microelectronic and Optoelectronic Packaging, edited by H. C. Ling, K. Niwa, V. N. Shukla, Ceram. Trans. 33, 261–270 (1993); J. Mater. Res. 9, 771–780 (1994); J. Mater. Res. 9, 1990–1996 (1994).

    Google Scholar 

  31. J-H. Jean and T. K. Gupta, IEEE Trans. CPMT, Part B 17 (2), 228–233 (1994); Int. J. Microcircuits Elec. Packaging 17, (1), 2nd Qtr., 169–175 (1994) Int. Elec. Pkg. Conf. (IEPS), 1993, San Diego, CA, pp. 993–1002.

  32. D. M. Mattox, S. R. Gurkovich, J.A. Olenic, and M. Mason, Ceram. Eng. Sci. Proc. 9 (11–12), 1567–1578 (1988).

    Google Scholar 

  33. J. C. Maxwell, in Electricity and Magnetism (Clarendon, Oxford, 1892), Vol. 1, p. 452.

    Google Scholar 

  34. J. Turner, J. Res. Natl. Bur. Stand., 37, 239 (1946).

    Article  CAS  Google Scholar 

  35. R. R. Tummala, J. Am. Ceram. Soc. 74 (5), 895–908 (1991).

    Article  CAS  Google Scholar 

  36. A. H. Kumar and R. R. Tummala, Int. J. Hybrid Microelectron. 14 (4), 137–150 (1991).

    Google Scholar 

  37. H. T. Sawhill, R. H. Jensen, and K. R. Mikeska, Ceram. Trans. 15, 611–628 (1990).

    CAS  Google Scholar 

  38. Y. Shimada, K. Utsumi, and T. Ikeda, Int. J. Hybrid Microelectron. 7 (4), 29–37 (1984).

    Google Scholar 

  39. R. Kambe, Am. Ceram. Soc. Bull. 71 (6), 962–968 (1992).

    CAS  Google Scholar 

  40. S. Nishigaki, S. Yano, J. Fukuta, M. Fukaya, and T. Fuwa, ISHM 1985, 225–234 (1985).

    Google Scholar 

  41. H. C. Bhadwar, S. T. Sawhill, D. H. Scheiber, S. Kawasaki, and E. A. Kemp, Hyb. Circuit Tech., 31–38 (May 1989).

    Google Scholar 

  42. A. L. Dow and M. J. Green, Hybrid Tech., 28–32 (Oct. 1991).

    Google Scholar 

  43. F. Dilazzaro and D. Newmann, ISHM 1991, 409–413 (1991).

    Google Scholar 

  44. K. Kata, A. Sasaki, Y. Shimada, and K. Utsumi, ISHM 1990 Proc., 308–315 (1990).

    Google Scholar 

  45. G-Q. Lu, R. C. Sutterlin, and T. K. Gupta, J. Am. Ceram Soc. 76 (8), 1907–1914 (1993).

    Google Scholar 

  46. R. C. Sutterlin, G-Q. Lu, and T. K. Gupta, in Materials in Microelectronic and Optoelectronic Packaging, edited by H. C. Ling, K. Niwa, and V. N. Shukla, Ceram. Trans. 33, 435–444 (1993).

    CAS  Google Scholar 

  47. G. M. Adema, M. J. Berry and I. Turlik, Elec. Packg. Prod., 72–76 (Feb. 1992).

    Google Scholar 

  48. P. Garrou, Elec. Packg. Prod., suppl. 44–47 (October 1992).

    Google Scholar 

  49. B. K. Gilbert and W.L. Walters, ICMCM Proceedings, 167–173 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, T.K., Jean, JH. Principles of the development of a silica dielectric for microelectronics packaging. Journal of Materials Research 11, 243–263 (1996). https://doi.org/10.1557/JMR.1996.0030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0030

Navigation