Skip to main content
Log in

Impedance spectroscopy of SrBi2Ta2O9 and SrBi2Nb2O9 ceramics correlation with fatigue behavior

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this research, a fatigue model for ferroelectric materials is proposed. The reasons for the electrical fatigue resistance of SrBi2Ta2O9 (SBT), SrBi2Nb2O9 (SBN), and PbZr1_xTixTixO3 (PZT) are discussed in terms of the bulk ionic conductivities of the compounds. To obtain the bulk ionic conductivity of SBT and SBN, we have used impedance spectroscopy which provides an effective method that allows us to separate the individual contributions of bulk, grain boundaries, and electrode-ferroelectric interfaces from the total capacitor impedance. The bulk ionic conductivities of SBT and SBN (~10-7 S/cm) are much higher than those of the perovskite ferroelectrics, e.g., PZT (~10 11 –10 -10 S/cm). The high ionic conductivities led us to conclude that the good fatigue resistance of SrBi2Ta2O9 and SrBi2Nb2O9 is due to easy recovery of defects. Specifically, oxygen vacancies entrapped within the capacitors are easily released, resulting in limited space charge buildup and domain wall pinning during the polarization reversal process. However, the oxygen vacancies in PZT are trapped at trap sites to become space charges, resulting in capacitor fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. K. Kwok and S. B. Desu, Appl. Phys. Lett. 60 (12), 1430 (1992).

    Article  CAS  Google Scholar 

  2. C. K. Kwok and S. B. Desu, J. Mater. Res. 8, 339 (1993).

  3. C. K. Kwok, S. B. Desu, and D. P. Vijay, Ferroelectric Lett. 16 (5–6), 143 (1994).

  4. L. E. Sanchez, D. T. Dion, S. Y. Wu, and I. K. Naik, Ferroelectrics 116, 1 (1991).

  5. S. K. Dey, K. D. Budd, and D. A. Payne, J. Am. Ceram. Soc. 7, C295 (1987), and IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 80 (1988).

  6. G. Yi, Z. Wu, and M. Sayer, J. Appl. Phys. 64, 2717 (1988).

  7. K. D. Budd, S. K. Dey, and D. A. Payne, Br. Ceram. Soc. Proc. 36, 107 (1985).

  8. J. Fukushima, K. Kodaira, and I. Matsushita, J. Mater. Sci. 19, 595 (1984).

  9. S. B. Krupanidhi, N. Maffei, M. Sayer, and K. Dl-Assal, J. Appl. Phys. 54, 6601 (1983).

  10. R. Takayama and T. Tomita, J. Appl. Phys. 65, 1666 (1989).

  11. A. Kingon, M. Ameen, O. Auciello, K. Gifford, H. Al-Shareef, T. Graettinger, S-H. Rou, and P. Hren, Ferroelectrics 116, 35 (1991).

  12. J. F. Chang and S. B. Desu, Ceram. Trans. 25, 155 (1992).

  13. C. H. Peng and S. B. Desu, Appl. Phys. Lett. 61 (1), 16 (1992).

  14. S. B. Desu, C. H. Peng, T. Shi, and P. A. Agaskar, J. Electrochem. Soc. 139 (9), 2682 (1992).

  15. C. H. Peng and S. B. Desu, J. Am. Ceram. Soc. 77 (7), 1799 (1994).

  16. W. Tao, S. B. Desu, and T. K. Li, Mater. Lett. 23, 177 (1995).

  17. R. W. Vest and W. Zhu, Ferroelectrics 119, 61 (1991).

  18. G. A. C. M. Spierings, M. J. E. Ulenaers, G. L. M. Kampschoer, H. A. M. Van Hal, and P. K. Larsen, J. Appl. Phys. 70, 2290 (1991).

  19. J. F. Chang and S. B. Desu, J. Mater. Res. 9, 955 (1994).

  20. A. R. Khan and S. B. Desu, J. Mater. Sci. 10 (11), 2777 (1995).

  21. D. P. Vijay and S. B. Desu, J. Electrochem. Soc. 140 (9), 2640 (1993).

  22. L. A. Bursill, I. M. Reaney, D. P. Vijay, and S. B. Desu, J. Appl. Phys. 75 (3), 1521 (1994).

  23. D. P. Vijay, C. K. Kwok, W. Pan, and S. B. Desu, ISAF 1992 Proceedings, 408 (1992).

  24. R. Ramesh, W. K. Chan, B. Wilkens, H. Gilchrist, T. Sands, J. M. Tarascon, V. G. Keramida, D. K. Fork, J. Lee, and A. Safari, Appl. Phys. Lett. 61, 1537 (1992).

  25. S. D. Bernstein, T. Y. Wong, Y. Kisler, and R. W. Tustison, J. Mater. Res. 8, 12 (1992).

  26. K. R. Bellur, H. N. Al-Shareef, S. H. Rou, K. D. Gifford, O. Auciello, and A. I. Kingon, ISAF 1992 Proceedings, 448 (1992).

  27. H. Watanabe, T. Mihara, H. Yoshimori, and C. A. Paz de Araujo, ISIF 1992 Proceedings, 346 (1992).

  28. R. Dat, J. K. Lee, O. Auciello, and A. I. Kingon, Appl. Phys. Lett. 67 (4), 572 (1995).

  29. O. Auciello, H. N. Al-Shareef, K. D. Gifford, D. J. Lichtenwalner, R. Dat, K. R. Bellur, A.I. Kingon, and R. Ramesh, in Epitaxial Oxide Thin Films and Heterostructures, edited by D. K. Fork, J. M. Phillips, R. Ramesh, and R. M. Wolf (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 341.

  30. C. A. Paz de Araujo, J. D. Cuchlaro, M. C. Scott, L. D. Mcmillan, and J. F. Scott, Nature 374, 627 (1995).

  31. S. B. Desu, and D. P. Vijay, Mater. Sci. Eng. B32, 75 (1995).

  32. S. B. Desu and D. P. Vijay, Mater. Sci. Eng. B32, 83 (1995).

  33. J. J. Lee, C. L. Thio, and S. B. Desu, J. Appl. Phys. 78 (8), 5073 (1995).

  34. S. B. Desu and T. K. Li, Mater. Sci. Eng. B34, L4 (1995).

  35. S. B. Desu and W. Pan, Appl. Phys. Lett. (1995) in press.

  36. T. K. Li, Y. Zhu, S. B. Desu, C. Peng, and M. Nagata, Appl. Phys. Lett. (1996) in press.

  37. D. P. Vijay, S. B. Desu, M. Nagata, X. Zhang, and T. C. Chen, in Ferroelectric Thin Films IV, edited by B. A. Tuttle, S. B. Desu, R. Ramesh, and T. Shiosaki (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 3.

  38. C. Karan, IBM Tech. Rep. (1955).

  39. I. S. Zheludev, Physics of Crystalline Dielectrics, Electrical Properties (Plenum Press, New York, 1971), Vol. 2, p. 474.

  40. A. Y. Kudzin, T. U. Panchenko, and S. P. Yudin, Sov. Phys. Solid State 16, 1589 (1975).

  41. I. K. Yoo and S. B. Desu, Mater. Sci. Eng. B13, 319 (1992).

  42. I. K. Yoo and S. B. Desu, Phys. Status Solidi (a) 133, 565 (1992).

  43. I. K. Yoo and S. B. Desu, J. Electrochem. Soc. 140, L133 (1993).

  44. I. K. Yoo and S. B. Desu, J. Intell. Mater. Syst. Struct. 4, 490 (1993).

  45. J. M. Duiker, P. D. Beale, J. F. Scott, C. A. Paz de Araujo, B. M. Melnik, J. D. Cuchtaro, and L. D. McMillan, J. Appl. Phys. 68, 5783 (1990).

  46. Q. Y. Jiang and L. E. Cross, J. Mater. Sci. 28, 4536 (1993).

  47. William L. Warren, Duane Dimos, and Bruce A. Tuttle, J. Am. Ceram. Soc. 77 (10), 2753 (1994).

  48. J. F. Scott, C. A. Araujo, B. M. Melnik, L. D. McMillan, and R. Zuleeg, J. Appl. Phys. 70, 382 (1991).

  49. C. K. Kwok and S. B. Desu, in Ferroelectric Thin Films II, edited by A. I. Kingon, E. R. Myers, and B. Tuttle (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 393.

  50. J. J. Lee C. L. Thio, M. Bhattacharya, and S. B. Desu, in Ferroelectric Thin Films IV, edited by B. A. Tuttle, S. B. Desu, R. Ranesg, and T. Shiosaki (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 241.

  51. T. H. Etsell and S. N. Flengas, Chem. Rev. 70, 339 (1970).

  52. R. Waser, J. Am. Ceram. Soc. 74 (8), 1934 (1991).

  53. J. H. Sluyters, Recl. Trav. Chim. Pays-Bas 79, 1092 (1960).

  54. J. E. Bauerle, J. Phys. Chem. Solids 30, 2657 (1969).

  55. R. W. Powers and S. W. Mitoff, J. Electrochem. Soc. 122, 226 (1975).

  56. R. D. Armstrong, T. Dickinson, and P. M. Willis, J. Electroanal. Chem. 53, 389 (1974).

  57. T. K. Li, T. C. Chen, S. B. Desu, and C. S. Peng, J. Integrated Ferroelectrics (1995) in press.

  58. T. C. Chen, T. K. Li, and S. B. Desu, unpublished.

  59. G. A. Smolenskii, V. A. Isupov, and A. I. Agranovskaya, Sov. Phys. Solid State 3, 651 (1961).

  60. D. M. Smyth, Ferroelectrics 151, 115 (1994).

  61. Y. Y. Lee, L. Wu, C. K. Liang, and T. S. Wu, Ferroelectrics 138, 11 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T.C., Thio, C.L. & Desu, S.B. Impedance spectroscopy of SrBi2Ta2O9 and SrBi2Nb2O9 ceramics correlation with fatigue behavior. Journal of Materials Research 12, 2628–2637 (1997). https://doi.org/10.1557/JMR.1997.0350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0350

Navigation