Skip to main content
Log in

Relationships between acoustic emission signals and physical phenomena during indentation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A commercial piezoelectric acoustic emission transducer has been used in conjunction with nanoindentation techniques to study the relationship between acoustic emission signals and discrete physical events to identify the type and strength of an event. Indentations into tungsten and iron single crystals have been used to study dislocation generation and passive film failure. In addition, indentations made into a thin nitride film on sapphire have been used to cause film delaminations. Parameters such as signal rise time and frequency for a piezoelectric sensor are related to sample geometry, and not to the type of event which caused the acoustic emission signal. As a possible calibration for acoustic emission sensors, the most meaningful parameter is the acoustic emission energy, which has been shown to scale with the elastic energy released during the event. The measured values of elastic energy released correspond very closely to those calculated using Hertzian contact mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  2. W. W. Gerberich, S. K. Venkataraman, H. Huang, S. E. Harvey, and D. L. Kohlstedt, Acta Metall. Mater. 43, 1569 (1995).

    Article  CAS  Google Scholar 

  3. T. F. Page, W. C. Oliver, and C. J. McHargue, J. Mater. Res. 7, 450 (1992).

    Article  CAS  Google Scholar 

  4. T. P. Weihs, C. W. Lawrence, B. Derby, C. B. Scruby, and J. B. Pethica, in Thin Films: Stresses and Mechanical Properties III, edited by W. D. Nix, J. C. Bravman, E. Arzt, and L. B. Freund (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 361.

  5. C. B. Scruby, J. C. Collingwood, and H. N. G. Wadley, J. Phys. D 11, 2359 (1978).

    Article  Google Scholar 

  6. C. B. Scruby, J. Phys. E 20, 946 (1987).

    Article  Google Scholar 

  7. H. N. G. Wadley, C. B. Scruby, and J. H. Speake, Int. Metal Rev. 3, 41 (1980).

    Google Scholar 

  8. H. N. G. Wadley, C. B. Scruby, and G. Shrimpton, Acta Metall. 29, 399 (1981).

    Article  CAS  Google Scholar 

  9. D. H. Kohn, P. Ducheyne, and J. Awerbuch, J. Mater. Sci. 27, 3133 (1992).

    Article  CAS  Google Scholar 

  10. T. W. Wu, J. Mater. Res. 6, 407 (1991).

    Article  Google Scholar 

  11. N. R. Moody, R. Q. Hwang, J. E. Angelo, S. K. Venkataraman, and W. W. Gerberich, Acta Mater. (in press).

  12. D. F. Bahr, J. W. Hoehn, N. R. Moody, and W. W. Gerberich, Acta Mater. (in press) (1997).

  13. W. W. Gerberich and C. E. Hartbower, Int. J. Fract. Mech. 3, 185 (1967).

    Article  Google Scholar 

  14. G. J. Curtis, Non-Destruct. Test. 8, 249 (1975).

    Article  Google Scholar 

  15. H. Cai, J. T. Evans, and D. Boomer, Eng. Fract. Mech. 42, 589 (1992).

    Article  Google Scholar 

  16. W. W. Gerberich, W. Yu, D. Kramer, A. Strojny, D. Bahr, E. Lilleodden, and J. Nelson, J. Mater. Res. 13, 421 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahr, D.F., Gerberich, W.W. Relationships between acoustic emission signals and physical phenomena during indentation. Journal of Materials Research 13, 1065–1074 (1998). https://doi.org/10.1557/JMR.1998.0148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0148

Navigation