Skip to main content
Log in

An investigation of carbon nanotubes obtained from the decomposition of methane over reduced Mg1−xMxAl2O4 spinel catalysts

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Carbon nanotubes produced by the treatment of Mg1−xMx Al2O4 (M = Fe, Co, or Ni; x = 0.1, 0.2, 0.3, or 0.4) spinels with an H2–CH4 mixture at 1070 °C have been investigated systematically. The grains of the oxide-metal composite particles are uniformly covered by a weblike network of carbon nanotube bundles, several tens of micrometers long, made up of single-wall nanotubes with a diameter close to 4 nm. Only the smallest metal particles (<5 nm) are involved in the formation of the nanotubes. A macroscopic characterization method involving surface area measurements and chemical analysis has been developed in order to compare the different nanotube specimens. An increase in the transition metal content of the catalyst yields more carbon nanotubes (up to a metal content of 10.0 wt% or x = 0.3), but causes a decrease in carbon quality. The best compromise is to use 6.7 wt% of metal (x = 0.2) in the catalyst. Co gives superior results with respect to both the quantity and quality of the nanotubes. In the case of Fe, the quality is notably hampered by the formation of Fe3C particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991).

    CAS  Google Scholar 

  2. P. Calvert, Nature 357, 365 (1992).

    Article  Google Scholar 

  3. P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, Science 265, 1212 (1994).

    Article  CAS  Google Scholar 

  4. R. S. Ruoff and D. C. Lorents, Carbon 33, 925 (1995).

    Article  CAS  Google Scholar 

  5. S. B. Sinnott, C. T. White, and D. W. Brenner, in Science and Technology of Fullerene Materials, edited by P. Bernier, D. S. Bethune, L. Y. Chiang, T. W. Ebbesen, R. M. Metzger, and J. W. Mintmire (Mater. Res. Soc. Symp. Proc. 359, Pittsburgh, PA, 1995), p. 241.

  6. J. F. Despres, E. Daguerre, and K. Lafdi, Carbon 33, 87 (1995).

    Article  CAS  Google Scholar 

  7. S. Iijima, Ch. Brabec, A. Maiti, and J. Bernholc, J. Phys. Chem. 104, 2089 (1996).

    Article  CAS  Google Scholar 

  8. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature 381, 678 (1996).

    Article  CAS  Google Scholar 

  9. N. Hamada, S. Sawada, and A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1994).

    Article  Google Scholar 

  10. J. W. Mintmire, B. I. Dunlap, and C. T. White, Phys. Rev. Lett. 68, 631 (1992).

    Article  CAS  Google Scholar 

  11. L. Langer, L. Stockman, J. P. Heremans, V. Bayot, C. H. Olk, C. Van Haesendonck, Y. Bruynseraede, and J. P. Issi, J. Mater. Res. 9, 927 (1994).

    Article  CAS  Google Scholar 

  12. Y. Nakayama, S. Akita, and Y. Shimada, Jpn. J. Appl. Phys. 34, L10 (1995).

  13. A. Yu. Kasumov, I. I. Khodos, P. M. Ajayan, and C. Colliex, Europhys. Lett. 34, 429 (1996).

    Article  CAS  Google Scholar 

  14. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, Nature 382, 54 (1996).

    Article  CAS  Google Scholar 

  15. H. Dai, E. W. Wong, and C. M. Lieber, Science 272, 523 (1996).

    Article  CAS  Google Scholar 

  16. S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker, Nature 386, 474 (1997).

    Article  CAS  Google Scholar 

  17. T. W. Ebbesen and P. M. Ajayan, Nature 358, 220 (1992).

    Article  CAS  Google Scholar 

  18. C. N. R. Rao, R. Seshadri, R. Sen, and A. Govindaraj, Mater. Sci. Engg. R15, 209 (1995).

    Article  CAS  Google Scholar 

  19. S. Iijima and T. Ichihashi, Nature 363, 603 (1993).

    Article  CAS  Google Scholar 

  20. D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vasquez, and R. Beyers, Nature 363, 605 (1993).

    Article  CAS  Google Scholar 

  21. C. H. Kian, W. A. Goddard III, R. Beyers, J. R. Salem, and D. Bethune, J. Phys. Chem. Solids 57, 35 (1996).

    Article  Google Scholar 

  22. S. Seraphin and D. Zhou, Appl. Phys. Lett. 64, 2087 (1994).

    Article  CAS  Google Scholar 

  23. C. Guerret-Plecourt, Y. Le Bouar, A. Loiseau, and H. Pascard, Nature 372, 761 (1994).

    Article  Google Scholar 

  24. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fisher, Nature 388, 756 (1997).

    Article  CAS  Google Scholar 

  25. T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki, Nature 367, 519 (1992).

    Article  Google Scholar 

  26. K. Tohji, T. Goto, H. Takahashi, Y. Shinoda, N. Shimizu, B. Jeyadevan, I. Matsuoka, Y. Saito, A. Kasuhka, T. Oshuna, K. Hiraga, and Y. Nishima, Nature 383, 679 (1996).

    Article  CAS  Google Scholar 

  27. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett. 243, 49 (1995).

    Article  CAS  Google Scholar 

  28. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinkler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fisher, and R. E. Smalley, Science 273, 483 (1996).

    Article  CAS  Google Scholar 

  29. A. Oberlin, M. Endo, and T. Koyama, J. Cryst. Growth 32, 335 (1976).

    Article  CAS  Google Scholar 

  30. F. Benissad-Aissani and P. Gadelle, Carbon 31, 21 (1993).

    Article  CAS  Google Scholar 

  31. M. J. Yacaman, M. M. Yoshida, L. Rendon, and J. G. Santiesteban, Appl. Phys. Lett. 62, 657 (1993).

    Article  Google Scholar 

  32. R. T. K. Baker and N. Rodriguez, in Novel Forms of Carbon II, edited by C. L. Renschler, D. M. Cox, J. J. Pouch, and Y. Achiba (Mater. Res. Soc. Symp. Proc. 349, Pittsburgh, PA, 1994), p. 251.

  33. V. Ivanov, A. Fonseca, J. B. Nagy, A. Lucas, P. Lambin, D. Bernaerts, and X. B. Zhang, Carbon 33, 1727 (1995).

    Article  CAS  Google Scholar 

  34. K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts, J. Riga, and A. Lucas, Synth. Metals 77, 31 (1996).

    Article  CAS  Google Scholar 

  35. A. Fonseca, K. Hernadi, J. B. Nagy, Ph. Lambin, and A. Lucas, Carbon 33, 1759 (1995).

    Article  CAS  Google Scholar 

  36. R. Sen, A. Govindaraj, and C. N. R. Rao, Chem. Phys. Lett. 267, 276 (1997); also see C. N. R. Rao, R. Sen, B. C. Satishkumar, and A. Govindaraj, Chem. Commun. 1525 (1998).

  37. S. Herrere and P. Gadelle, Carbon 33, 234 (1995).

    Article  Google Scholar 

  38. M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H. W. Kroto, and A. Sarkar, Carbon 33, 873 (1993).

    Article  Google Scholar 

  39. H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett. 260, 471 (1996).

    Article  CAS  Google Scholar 

  40. G. G. Tibbetts, J. Cryst. Growth 66, 632 (1984).

    Article  CAS  Google Scholar 

  41. R. T. K. Baker, P. S. Harris, R. B. Thomas, and R. J. Waite, J. Catal. 30, 86 (1993).

    Article  Google Scholar 

  42. S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, and J. B. Nagy, Science 265, 635 (1995).

    Article  Google Scholar 

  43. K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts, A. Fudala, and A. A. Lucas, Zeolites 17, 416 (1996).

    Article  CAS  Google Scholar 

  44. M. Verelst, K. R. Kannan, G. N. Subbanna, C. N. R. Rao, Ch. Laurent, and A. Rousset, J. Mater. Res. 7, 3072 (1992).

    Article  CAS  Google Scholar 

  45. X. Devaux, Ch. Laurent, and A. Rousset, Nanostruct. Mater. 2, 339 (1993).

    Article  CAS  Google Scholar 

  46. Ch. Laurent, A. Rousset, M. Verelst, K. R. Kannan, A. R. Raju, and C. N. R. Rao, J. Mater. Chem. 3, 513 (1993).

    Article  CAS  Google Scholar 

  47. Ch. Laurent, J. J. Demai, A. Rousset, K. R. Kannan, and C. N. R. Rao, J. Mater. Res. 9, 229 (1994).

    Article  CAS  Google Scholar 

  48. Ch. Laurent, Ch. Blaszczyk, M. Brieu, and A. Rousset, Nano-struct. Mater. 6, 317 (1995).

    Article  CAS  Google Scholar 

  49. O. Quénard, Ch. Laurent, M. Brieu, and A. Rousset, Nanostruct. Mater. 7, 497 (1996).

    Article  Google Scholar 

  50. O. Quénard, E. De Grave, Ch. Laurent, and A. Rousset, J. Mater. Chem. 7, 2457 (1997).

    Article  Google Scholar 

  51. V. Carles, M. Brieu, and A. Rousset, Nanostruct. Mater. 8, 529–544 (1997).

    Article  CAS  Google Scholar 

  52. A. Peigney, Ch. Laurent, F. Dobigeon, and A. Rousset, J. Mater. Res. 12, 613 (1997).

    Article  CAS  Google Scholar 

  53. Ch. Laurent, A. Peigney, and A. Rousset, J. Mater. Chem. 8, 1263 (1998).

    Article  CAS  Google Scholar 

  54. A. Peigney, Ch. Laurent, O. Dumortier, and A. Rousset, J. Eur. Ceram. Soc., unpublished.

  55. C. N. R. Rao, Chemical Approaches to the Synthesis of Inorganic Materials (John Wiley, Chichester, 1994).

    Google Scholar 

  56. J. J. Kingsley and K. C. Patil, Mater. Lett. 6, 427 (1988).

    Article  CAS  Google Scholar 

  57. K. C. Patil, Bull. Mater. Sci. 16, 533 (1993).

    Article  CAS  Google Scholar 

  58. S. R. Jain, K. C. Adiga, and V. R. Pai Verneker, Combust. Flame 40, 71 (1981).

    Article  CAS  Google Scholar 

  59. R. Seshadri, A. Govindaraj, H. N. Aiyer, R. Sen, G. N. Subbanna, A. R. Raju, and C. N. R. Rao, Curr. Sci. (India), 66, 839 (1994).

    CAS  Google Scholar 

  60. O. Quénard, Doctoral Thesis, Toulouse, 280 pp. (1997).

  61. G. A. Jablonski, F. W. Geurts, A. Sacco, Jr., and R. R. Biederman, Carbon 30, 87 (1992).

    Article  CAS  Google Scholar 

  62. S. Iijima, P. M. Ajayan, and T. Ichihashi, Phys. Rev. Lett. 69, 3100 (1992).

    Article  CAS  Google Scholar 

  63. N. M. Rodriguez, M. S. Kim, and R. T. K. Baker, J. Phys. Chem. 98, 13108 (1994).

    Article  CAS  Google Scholar 

  64. W. B. Downs and R. T. K. Baker, J. Mater. Res. 10, 625 (1995).

    Article  CAS  Google Scholar 

  65. B. C. Satishkumar, A. Govindaraj, and C. N. R. Rao, J. Phys. B 29, 4925 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govindaraj, A., Flahaut, E., Laurent, C. et al. An investigation of carbon nanotubes obtained from the decomposition of methane over reduced Mg1−xMxAl2O4 spinel catalysts. Journal of Materials Research 14, 2567–2576 (1999). https://doi.org/10.1557/JMR.1999.0344

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0344

Navigation