Skip to main content
Log in

Synthesis and characterization of rutile TiO2 nanowhiskers

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Rutile TiO2 nanowhiskers have been synthesized by annealing a precursor powder in which NaCl and Ti(OH)4 particles were homogeneously mixed. The precursor powder was prepared by mixing three kinds of inverse microemulsions (μE) containing TiCl4 aqueous solution, ammonia, and NaCl aqueous solution, respectively, followed by washing with acetone. Annealing temperature and packing density of Ti(OH)4 in the precursor powder influenced the formation of rutile nanowhiskers. The optimum temperature was 750 °C. TiO2 nanowhiskers obtained by annealing a precursor powder in which the molar ratio of sodium to titanium was 400 at 750 °C for 2 h had diameters of 10–50 nm and lengths of several micrometers. They were straight rods with square cross sections, and the side surfaces were composed of four equivalent {110} planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nanostructured Materials in Electrochemistry, edited by P.C. Searson and G.J. Mayer (Electrochem. Soc. Proc. 95–8, Pennington, 1995).

  2. Photocatalysis: Fundamentals and Applications, edited by N. Serpone and E. Pellizetti (John Wiley & Sons, New York, 1989).

  3. P. Jones and J.A. Hockey, Trans. Faraday Soc. 67, 2679 (1971).

    Article  CAS  Google Scholar 

  4. S. Toshev in Crystal Growth: A Introduction, edited by P. Hartman (North-Holland, Amsterdam, 1973), p. 328.

  5. H. Dal, E.W. Wong, Y.Z. Lu, S. Fan, and C.M. Lieber, Nature 375, 769 (1995).

    Article  Google Scholar 

  6. W. Han, S. Fan, Q. Li, and Y. Hu, Science 277, 1287 (1997).

    Article  CAS  Google Scholar 

  7. A.M. Morales and C.M. Lieber, Science 279, 208 (1998).

    Article  CAS  Google Scholar 

  8. J. Westwater, D.P. Gosain, S. Tomiya, and S. Usui, J. Vac. Sci. Technol. B15, 554 (1997).

    Article  Google Scholar 

  9. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, and M. Koguchi, J. Appl. Phys. 77, 447 (1995).

    Article  CAS  Google Scholar 

  10. T.J. Trantler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, and W.E. Buhro, Science 270, 1791 (1995).

    Article  Google Scholar 

  11. C.R. Martin, Science 266, 1961 (1994).

    Article  CAS  Google Scholar 

  12. C. Cuerrent-Plecourt, Nature 372, 761 (1994).

    Article  Google Scholar 

  13. E. Braun, Nature 391, 775 (1998).

    Article  CAS  Google Scholar 

  14. S. Matsuda, Appl. Catal. 8, 149 (1983).

    Article  CAS  Google Scholar 

  15. G. Dagan and M. Tomkiewics, J. Phys. Chem. 97, 12651 (1003).

    Article  Google Scholar 

  16. A.M. Azad, L.B. Younkman, and S. A. Akbar, J. Am. Ceram. Soc. 77, 481 (1994).

    Article  CAS  Google Scholar 

  17. Y.C. Yeh, T.T. Tseng, and D.A. Chang, J. Am. Ceram. Soc. 73, 1992 (1990).

    Article  CAS  Google Scholar 

  18. A.M. Katayama, H. Hasegawa, T. Noda, T. Akiba, and H. Yanagida, Sensors and Actuators B2, 143 (1992).

    Google Scholar 

  19. R. Marchand, L. Brohan, and M. Tournoux, Mater. Res. Bull. 15, 1129 (1980).

    Article  CAS  Google Scholar 

  20. H. Yanagita, T. Shimizu, K. Hashimoto, T. Morita, and D. Tsbone, Jpn. Patent 78 41,518 (1978).

  21. L. Elfenthal, E. Klein, and F. Rosendahl, German Patent 41 05,345.1 (1992).

  22. T. Oota and I. Yamai, J. Cryst. Growth 66, 262 (1984).

    Article  CAS  Google Scholar 

  23. J. Wang, L.S. Ee, S.C. Ng, C.H. Chew, and L.M. Gan, Mater. Lett. 30, 119 (1997).

    Article  CAS  Google Scholar 

  24. P. Barnickel, A. Wokaun, W. Sager, and H.F. Eiche, J. Colloid Interface Sci. 148, 80 (1992).

    Article  CAS  Google Scholar 

  25. H. Herrig and R. Hempelmann, Mater. Lett. 27, 287 (1996).

    Article  CAS  Google Scholar 

  26. S. Hingorani, D.O. Shah, and M.S. Multani, J. Mater. Res. 10, 461 (1995).

    Article  CAS  Google Scholar 

  27. W. Hartl, Ch. Beck, M. Roth, F. Meyer, and R. Hempelmann, Ber. Bunsenges Phys. Chem. 101, 1714 (1997).

    Article  CAS  Google Scholar 

  28. P. Kumar, V. Pilloi, and D.O. Shah, Appl. Phys. Lett. 62, 765 (1993).

    Article  CAS  Google Scholar 

  29. S. Schlag, H.E. Eicke, D. Mathys, and R. Guggenheim, Langmuir 10, 3775 (1994).

    Article  Google Scholar 

  30. M. Gan, H.S.O. Chan, L.H. Zhang, C.H. Chew, and B.H. Loo, Mater. Chem. Phys. 37, 263 (1994).

    Article  CAS  Google Scholar 

  31. A. Pathank, D.K. Mukhopadhyay, and P. Pramnik, Mater. Res. Bull. 27, 155 (1992).

    Article  Google Scholar 

  32. H.K. Park, D.K. Kim, and C.H. Kim, J. Am. Ceram. Soc. 80, 743 (1997).

    Article  CAS  Google Scholar 

  33. J. Harada, M. Takata, H. Miyatake, and H. Koyama, J. Appl. Cryst. 22, 592 (1989).

    Article  CAS  Google Scholar 

  34. J.W. Edington, Electron Diffraction in The Electron Microscope (Macmillan Press, London, 1975), p. 54.

    Book  Google Scholar 

  35. A. Szabo and T. Engel, Surf. Sci. 329, 241 (1995).

    Article  CAS  Google Scholar 

  36. H. Onishi and Y. Iwasawa, Surf. Sci. 313, L783 (1994).

    Article  CAS  Google Scholar 

  37. C. Xu, X. Lai, G.W. Zajac, and D.W. Goodman, Phys. Rev. B56, 13464 (1992).

    Google Scholar 

  38. L.D. Marks and D.J. Smith, Nature 303, 316 (1983).

    Article  CAS  Google Scholar 

  39. L.D. Marks, Phys. Rev. Lett. 51, 1000 (1983).

    Article  CAS  Google Scholar 

  40. K-N.P. Kumar, Script. Metal. Mater. 32, 873 (1995).

    Article  CAS  Google Scholar 

  41. X.Z. Ding and Y.Z. He, J. Mater. Sci. Lett. 15, 320 (1996).

    Article  CAS  Google Scholar 

  42. R. Rodriguez, S. Vrgas, R. Arroyo-Murillo, R. Montiel-Campos, and E. Haro-Poniatowski, J. Mater. Res. 12, 439 (1997).

    Article  Google Scholar 

  43. E.M. Levin and H.F. McMuride, Phase Diagrams for Ceramist, edited by K.R. Margie (Am. Ceram. Soc., Columbus, OH, 1969) suppl. p. 473.

  44. K-N.P. Kumar, K. Keizer, A.J. Burggraaf, T. Okubo, H. Nagamoto, and S. Morooka, Nature 358, 48 (1992).

    Article  CAS  Google Scholar 

  45. U. Gesenhues, Solid State Ionics 101–103, 1171 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G.L., Wang, G.H. & Hong, J.M. Synthesis and characterization of rutile TiO2 nanowhiskers. Journal of Materials Research 14, 3346–3354 (1999). https://doi.org/10.1557/JMR.1999.0453

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0453

Navigation