Skip to main content
Log in

Deposition and mechanical properties of polycrystalline Y2O3/ZrO2 superlattices

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Polycrystalline Y2O3/ZrO2 superlattice thin films were deposited using opposedcathode reactive magnetron sputtering. Pulsed direct-current power was used to eliminate arcing on the metallic targets. Radio-frequency power was applied to the substrates to achieve ion bombardment of the growing film. In order to reproducibly deposit at high rates in Ar–O2 mixtures, the Y target voltage was used to indirectly feedback-control the O2 partial pressure. Deposition rates as high as ∼70% of the pure metal rates were achieved, typically 3.5 μm/h. Superlattices with periods ranging from 2.6 to 95 nm were deposited. Y2O3 layer thicknesses were either 75% or 50% of the superlattice period. X-ray diffraction and transmission electron microscopy studies showed well-defined superlattice layers. The ZrO2 layers exhibited the high-temperature cubic-fluorite structure, which was epitaxially stabilized by the cubic Y2O3 layers, for thicknesses ≤7 nm. The equilibrium monoclinic structure was observed for thicker ZrO2 layers. Nanoindentation hardnesses ranged from 11.1 to 14.5 GPa with little dependence on period. The hardness results are discussed in terms of current superlattice hardening theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Helmersson, S. Todorova, S.A. Barnett, J-E. Sundgren, L.C. Markert, and J.E. Greene, J. Appl. Phys. 62, 481 (1987).

    Article  CAS  Google Scholar 

  2. M. Shinn, L. Hultman, and S.A. Barnett, J. Mater. Res. 7, 901 (1992).

    Article  CAS  Google Scholar 

  3. X. Chu, M.S. Wong, W.D. Sproul, S.L. Rohde, and S.A. Barnett, J. Vac. Sci. Technol. A 10, 1604 (1992).

    Article  CAS  Google Scholar 

  4. S. Menezes and D.P. Anderson, J. Electrochem. Soc. 137, 440 (1990).

    Article  CAS  Google Scholar 

  5. X. Chu and S.A. Barnett, J. Appl. Phys. 77, 4403 (1995).

    Article  CAS  Google Scholar 

  6. P.M. Anderson and C. Li, Nanostruct. Mater. 5, 349 (1995).

    Article  CAS  Google Scholar 

  7. T.F. Page, W.C. Oliver, and C.J. McHargue, J. Mater. Res. 7, 450 (1992).

    Article  CAS  Google Scholar 

  8. G.S. Was and T. Foecke, Thin Solid Films 286, 1 (1996).

    Article  CAS  Google Scholar 

  9. C.R. Aita, M.D. Wiggins, R. Whig, and C.M. Scanlon. J. Appl. Phys. 79, 1176 (1996).

    Article  CAS  Google Scholar 

  10. M. Rühle, J. Vac. Sci. Technol. A 3, 749 (1985).

    Article  Google Scholar 

  11. R.C. Garvie, J. Phys. Chem. 82, 218 (1978).

    Article  CAS  Google Scholar 

  12. R. Banerjee, R. Ahuja, and H. Fraser, Phys. Rev. Lett. 76, 3778 (1996).

    Article  CAS  Google Scholar 

  13. A. Madan, I.W. Kim, S.C. Cheng, P. Yashar, V.P. Dravid, and S.A. Barnett, Phys. Rev. Lett. 78, 1743 (1997).

    Article  CAS  Google Scholar 

  14. P. Yashar, X. Chu, S.A. Barnett, J. Rechner, Y.Y. Wang, M.S. Wong, and W.D. Sproul, Appl. Phys. Lett. 72, 987 (1998).

    Article  CAS  Google Scholar 

  15. M. Ohring, The Materials Science of Thin Films (Academic Press, New York, 1992).

    Google Scholar 

  16. U. Helmersson and J.E. Sundgren, J. Electron Microsc. Techn. 4, 361 (1986).

    Article  CAS  Google Scholar 

  17. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  18. J.S. Browder, S.S. Ballad, and P. Klocek, in Handbook of Infrared Optical Materials, edited by P. Klocek (Marcel Dekker, New York, 1991), Chap. 5.

  19. H. Ljungcrantz, L. Hultman, J-E. Sundgren, and L. Karlsson, J. Appl. Phys. 78, 832 (1995).

    Article  CAS  Google Scholar 

  20. D.M. Mattox, J. Vac. Sci. Technol. A 7, 1105 (1989).

    Article  CAS  Google Scholar 

  21. L.G. Parrat, Phys. Rev. 95, 359 (1954).

    Article  Google Scholar 

  22. D.G. Stearns, J. Appl. Phys. 65, 491 (1989).

    Article  CAS  Google Scholar 

  23. E. Leven and H. McMurdie, Phase Equilibria Diagrams: Phase Diagrams for Ceramists, (American Ceramic Society, Wester-ville, OH, 1992), Vol. 9.

  24. P. Villars and L.D. Calvert, Pearson’s Handbook of Crystallo-graphic Data for Intermetallic Phases (American Society for Metals, Metals Park, OH, 1985), Vol. 1.

  25. R. Wallenberg, R. Withers, D.J.M. Bevan, J.G. Thompson, P. Barlow, and B.G. Hyde, J. Less-Common Met. 156, 1–16 (1989).

    Article  CAS  Google Scholar 

  26. R.L. Withers, J.G. Thompson, N. Gabbitas, L.R. Wallenberg, and T.R. Welberry, J. Solid State Chem. 120, 290 (1995).

    Article  CAS  Google Scholar 

  27. P. Yashar, J. Rechner, M.S. Wong, W.D. Sproul, and S.A. Bar-nett, Surf. Coat. Technol. 94–95, 333 (1997).

    Article  Google Scholar 

  28. S.A. Barnett, in Physics of Thin Films, edited by M. Francombe and J.A. Vossen (Academic Press, New York, 1993).

  29. E.S. Pacheco and T. Mura, J. Mech. Phys. Solids. 17, 163 (1969).

    Article  Google Scholar 

  30. J. Lankford, J. Mater. Sci. 21, 1981 (1986).

    Article  CAS  Google Scholar 

  31. T.H. Courtney, Mechanical Behavior of Materials (McGraw-Hill, Inc., New York, 1990).

    Google Scholar 

  32. J.E. Krzanowski, Scr. Metall. Mater. 25, 1465 (1991).

    Article  Google Scholar 

  33. A. Madan, Y.Y. Wang, S.A. Barnett, C. Engström, H. Ljung-crantz, L. Hultman, and M. Grimsditch, J. Appl. Phys. 84, 776 (1998).

    Article  CAS  Google Scholar 

  34. R.H.J. Hannink and M.V. Swain, in Annual Review of Materials Science (Annual Reviews, Inc., Palo Alto, CA, 1994), Vol. 24, p 359.

  35. M. Odén, Ph.D. Thesis, Linköping Studies in Science and Technology, Dissertation No. 411, Linköping University, 1995.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yashar, P.C., Barnett, S.A., Hultman, L. et al. Deposition and mechanical properties of polycrystalline Y2O3/ZrO2 superlattices. Journal of Materials Research 14, 3614–3622 (1999). https://doi.org/10.1557/JMR.1999.0488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0488

Navigation