Skip to main content
Log in

Piezoresistivity of conducting polyaniline/BaTiO3 composites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Conducting polyaniline/barium titanate (PANI/BaTiO3) composites exhibiting piezoresistivity properties have been synthesized by the in situ deposition technique by placing a fine grade powder of BaTiO3 in the polymerization reaction mixture. The polyaniline was formed preferentially on the ceramic particles giving a much higher yield for PANI than in absence of the BaTiO3 These composites exhibited piezoresistivity with the piezosensitivity being maximum at a certain composition. The current–voltage characteristics clearly revealed a nonlinear space charge controlled charge transport process. A large hysteresis in these characteristics was also observed which was dependent on the BaTiO3 content in a composite. The various results have been explained on the basis of the charge transport mechanism in the heterogeneous conducting material having insulating domains dispersed in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.C. Petty, M.R. Bryce, and D. Bloor, An introduction to molecular electronics (Edward Arnold, London, United Kingdom, The Netherlands, 1995).

    Google Scholar 

  2. B. Scrosati, Applications of electroactive polymers (Chapman and Hall, London, United Kingdom, 1993).

  3. L. Alcacer, Conducting polymers-Special applications (Reidel, Dordrecht, United Kingdom, 1989).

  4. A.J. Epstein and A.G. MacDiarmid, Makromol. Chem., Macromol. Symp. 51, 217 (1991).

    Article  CAS  Google Scholar 

  5. J. Heinze, Top. Curr. Chem. 152, 2 (1990).

    Google Scholar 

  6. Y. Yang and A.J. Heeger, Appl. Phys. Lett. 64, 1245 (1994).

    Article  CAS  Google Scholar 

  7. S. Unde, J. Ganu, and S. Radhakrishnan, Adv. Mater. Opt. Electron. 6, 151 (1996).

    Article  CAS  Google Scholar 

  8. Y. Wada, in Electronic properties of polymers, edited by J. Mort and G. Pfister (John Wiley, New York, 1982), p. 109.

  9. H.S. Nalwa, Ferroelectric polymers (Marcel Dekker, New York, 1995), Chapter 11.

  10. T.T. Wang, J.M. Herbert, and A.M. Glass, The applications of ferroelectric polymers (Blackie, Glasgow, United Kingdom, 1988).

  11. G. Harsany, Polymer films in sensor applications (Technomic Publisher, Lancaster, PA, 1995).

  12. (a) H. Banno and K. Ogura, Ferroelectrics 95, 171 (1989); (b) R.E. Newnham, Ferroelectrics 68, 1 (1986).

    Google Scholar 

  13. D.K. Das-Gupta, Ferroelectric Polymers and Ceramic-Polymer Composites (Trans-Tech. Publ., Uetikon-Zurich, Switzerland, 1994), Chap. 7.

  14. K. Mazur, IEEE Trans. Electr. Insul. 27, 782 (1992).

    Article  CAS  Google Scholar 

  15. D.S. Maddison and J. Unsworth, Synth. Met. 22, 257 (1988).

    Article  CAS  Google Scholar 

  16. (a) S. Radhakrishnan, S. Chakne, and P. Shelke, Mater. Lett. 18, 358 (1994); (b) S. Radhakrishnan and D.R. Saini, Polym. Int. 34, 111 (1994).

    Article  Google Scholar 

  17. J.D. Mackenzie and D.R. Ulrich, Ultrastructure processing of advance ceramics (J. Wiley, New York, 1982), pp. 925, 935.

  18. M.C. Gust, L.A. Momoda, and M.L. Mecartney, in Better Ceramics Through Chemistry VI, edited by A.K. Cheetham, C.J. Brinkers, M.L. Mecartney, and C. Sanchez (Mater. Res. Soc. Symp. Proc. 346, Pittsburgh, PA, 1994), p. 649.

  19. Y. Xu and J.D. Mackenzie, Integrated ferroelectrics, edited by C.J. Brinkers and G.W. Sherrer (Acad. Press, New York, 1990), p. 117.

  20. S. Radhakrishnan and D.R. Saini, Synth. Met. 58, 243 (1993).

    Article  CAS  Google Scholar 

  21. S. Radhakrishnan and S.P. Khedkar, Synth. Met. 79, 219 (1996).

    Article  CAS  Google Scholar 

  22. M. Wan and J. Young, J. Appl. Polym. Sci. 49, 1639 (1993).

    Article  CAS  Google Scholar 

  23. (a) F. Zaera, E.B. Kollin, and J.L. Gland, Surf. Sci. 184, 75 (1987); (b) V. Parenti, G. Pourtous, R. Lazzaroni, J.L. Bredas, G. Ruari, M. Murgia, and R. Zambori, Adv. Mater. 10, 319 (1998).

    Google Scholar 

  24. S. Radhakrishnan, Polym. Commun. 26, 153 (1985).

    CAS  Google Scholar 

  25. E.K. Sichel, Carbon black polymer composites (Marcel Dekker, New York, 1982).

  26. D.M. Bigg, Polym. Compos. 8, 1 (1987).

    Article  CAS  Google Scholar 

  27. (a) F. Gutman and L.E. Lyons, Organic semiconductors (J. Wiley, New York, 1967); (b) D.A. Senor, Electrical properties of polymers (Academic Press, New York, 1982).

  28. S. Radhakrishnan, J. Mater. Sci. Lett. 4, 1455 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patil, R.C., Radhakrishnan, S., Pethkar, S. et al. Piezoresistivity of conducting polyaniline/BaTiO3 composites. Journal of Materials Research 16, 1982–1988 (2001). https://doi.org/10.1557/JMR.2001.0271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0271

Navigation