Skip to main content
Log in

High grain size stability of nanocrystalline Al prepared by mechanical attrition

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Grain growth in nanocrystalline (nc) Al with a grain size of 26 nm produced by cryogenic mechanical milling was studied through x-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. Grain growth kinetics resembled those of ball-milled nc Fe. For homologous temperatures (T/TM) of 0.51–0.83, the time exponent n from D1/nD01/n = kt was 0.04–0.28, tending toward 0.5 as T/TM increased. Two grain-growth regimes were distinguished: below T/TM = 0.78 growth ceased at an approximate grain size of 50 nm while at higher temperatures, grain growth proceeded steadily to the submicrometer range. Grain growth over the range of temperatures studied cannot be explained in terms of a single thermally activated rate process. The observed high grain size stability was attributed primarily to impurity pinning drag associated with the grain growth process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.R. Malow and C.C. Koch, Acta Mater. 45, 2177 (1997).

    Article  CAS  Google Scholar 

  2. T.R. Malow and C.C. Koch, in Synthesis and Processing of Nanocrystalline Materials, edited by D.L. Bourell (TMS, Warren-dale, PA, 1996), p. 33.

    Article  CAS  Google Scholar 

  3. K. Lu, Mater. Sci. Eng. R16, 161 (1996).

    Google Scholar 

  4. J. Weissmuäller, in Synthesis and Processing of Nanocrystalline Materials, edited by D.L. Bourell (TMS, Warrendale, PA, 1996), p. 3.

    Article  Google Scholar 

  5. C. Suryanarayana, Int. Mater. Rev. 40, 41 (1995).

    Google Scholar 

  6. P.G. Shewmon, Transformation in Metals (McGraw-Hill, New York, 1969), p. 300.

    Article  CAS  Google Scholar 

  7. R. Birringer, Mater. Sci. Eng. A 117, 33 (1989); V.Y. Gertsman and R. Birringer, Scripta Metall. Mater. 30, 577 (1994).

    Google Scholar 

  8. U. Klement, U. Erb, A. M. El-Sherik, and K.T. Aust, Mater. Sci. Eng. A 203, 177 (1995).

    Article  Google Scholar 

  9. R.W. Siegel, S. Ramasamy, H. Hahn, Z. Li, T. Lu, and R. Gronsky, J. Mater. Res. 3, 1367 (1988).

    Article  Google Scholar 

  10. K. Lu, Z.F. Dong, I. Bakonyi, and A. Cziraki, Acta Metall. Mater. 43, 2641 (1995).

    Article  CAS  Google Scholar 

  11. J. Eckert, J.C. Holzer, and W.L. Johnson, J. Appl. Phys. 73, 131 (1993).

    Article  CAS  Google Scholar 

  12. C.E. Krill, R. Klein, S. Janes, and R. Birringer, Mater. Sci. Forum 179–181, 443 (1995).

    Article  CAS  Google Scholar 

  13. R.J. Perez, H.G. Jiang, C.P. Dogan, and E.J. Lavernia, Metall. Trans. A 29, 2469 (1998).

    Article  Google Scholar 

  14. J. Weissmuäller, Nanostruc. Mater. 3, 261 (1993).

    Article  Google Scholar 

  15. P. Knauth, A. Charai, and P. Gas, Scripta Metall. Mater. 28, 325 (1993).

    Article  Google Scholar 

  16. H.J. Hoäfler and R.S. Averback, Scripta Metall. Mater. 24, 2401 (1990).

    Article  CAS  Google Scholar 

  17. K. Boylan, D. Ostrander, U. Erb, G. Palumbo, and K.T. Aust, Scripta Metall. Mater. 25, 2711 (1991).

    Article  Google Scholar 

  18. C. Bansal, Z. Gao, and B. Fultz, Nanostruct. Mater. 5, 327 (1995).

    Article  CAS  Google Scholar 

  19. P.A. Beck, J.C. Kremer, L.J. Demer, and M.L. Holzworth, Trans. Am. Inst. Min. Engrs. 175, 372 (1948).

    Article  CAS  Google Scholar 

  20. J.E. Burke, Trans. Am. Inst. Min. Engrs. 180, 73 (1949).

    Google Scholar 

  21. H. Hu and B.B. Rath, Metall. Trans. 1, 3181 (1970); R.A. Vandermeer and H. Hu, Acta Metall. Mater. 42, 3071 (1994).

    Google Scholar 

  22. A. Michels, C.E. Krill, H. Ehrhardt, R. Birringer, and D.T. Wu, Acta Mater. 47, 2143 (1999).

    Google Scholar 

  23. M.J. Luton, C.S. Jayanth, M.M. Disko, S. Matras, and J. Vallone, in Multicomponent Ultrafine Microstructures, edited by L.E. McCandish, B.H. Kear, D.E. Polk, and R.W. Siegel (Mater. Res. Soc. Symp. Proc., 132 Pittsburgh, PA, 1989), p. 79.

    Article  CAS  Google Scholar 

  24. H.P. Klug and L. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (John Wiley and Sons, New York, 1974), p. 661.

    Google Scholar 

  25. J. Eckert, J.C. Holzer, C.E. Krill III, and W.L. Johnson, J. Mater. Res. 7, 1751 (1992).

    Google Scholar 

  26. D. Oleszak and P.H. Shingu, J. Appl. Phys. 79, 2975 (1996).

    Article  CAS  Google Scholar 

  27. C.S. Smith, Trans. AIME 9, 15 (1949).

    Article  CAS  Google Scholar 

  28. H.J. Frost and M.F. Ashby, in Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, United Kingdom, 1982), p. 21; Smithells Metals Reference Book, 5th ed. (Butterworths, Oxford, United Kingdom, 1976), p. 860.

    Google Scholar 

  29. S. Dais, R. Messer, and A. Seeger, Mater. Sci. Forum 15–18, 419 (1987).

    Google Scholar 

  30. Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64, 6044 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, F., Lee, J., Dallek, S. et al. High grain size stability of nanocrystalline Al prepared by mechanical attrition. Journal of Materials Research 16, 3451–3458 (2001). https://doi.org/10.1557/JMR.2001.0474

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0474

Navigation