Skip to main content
Log in

Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn–3.5Ag, Sn–3.8Ag–0.7Cu and Sn–0.7Cu) on Cu

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Intermetallic compound (IMC) growth during solid-state aging at 125, 150, and 170 °C up to 1500 h for four solder alloys (eutectic SnPb, Sn–3.5Ag, Sn–3.8Ag–0.7Cu, and Sn–0.7Cu) on Cu under bump metallization was investigated. The samples were reflowed before aging. During the reflow, the solders were in the molten state and the formation of the IMC Cu6Sn5 in the cases of eutectic SnPb and Sn–3.5Ag had a round scallop-type morphology, but in Sn–0.7Cu and Sn–3.8Ag–0.7Cu the scallops of Cu6Sn5 were faceted. In solid-state aging, all these scallops changed to a layered-type morphology. In addition to the layered Cu6Sn5, the IMC Cu3Sn also grew as a layer and was as thick as the Cu6Sn5. The activation energy of intermetallic growth in solid-state aging is 0.94 eV for eutectic SnPb and about 1.05 eV for the Pb-free solders. The rate of intermetallic growth in solid-state aging is about 4 orders of magnitude slower than that during reflow. Ternary phase diagrams of Sn–Pb–Cu and Sn–Ag–Cu are used to discuss the reactions. These diagrams predict the first phase of IMC formation in the wetting reaction and the other phases formed in solid-state aging. Yet, the morphological change and the large difference in growth rates between the wetting reaction and solid-state aging cannot be predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abtew and G. Selvaduray, Mater. Sci. Eng. 27, 95 (2000).

    Article  CAS  Google Scholar 

  2. J. Bath, C. Handwerker, and E. Bradley, Circuits Assem. 11, 30 (2000).

    Article  Google Scholar 

  3. P. Biocca, Surf. Mount Technol. 13, 64 (1999).

    Google Scholar 

  4. K. Snowdon, Proc. Eur. Microelectron. Packag. Conf., 12th 71 (1999).

    Google Scholar 

  5. S.K. Kang and A.K. Sarkhel, J. Electron. Mater. 23, 701 (1994).

    Google Scholar 

  6. M. McCormack and S. Jin, J. Electron. Mater. 23, 715 (1994).

    Article  CAS  Google Scholar 

  7. J.W. Morris, J.L.F. Goldstein, and Z. Mei, JOM 45, 25 (1993).

    Article  CAS  Google Scholar 

  8. J. Sigelko, S. Choi, K.N. Subramanian, J.P. Lucas, and T.R. Bieler, J. Electron. Mater. 28, 1184 (1999).

    Article  CAS  Google Scholar 

  9. S.K. Kang, R.S. Rai, and S. Purushothaman, J. Electron. Mater. 25, 1113 (1996).

    Article  CAS  Google Scholar 

  10. C.Y. Liu, C. Chen, A.K. Mai, and K.N. Tu, J. Appl. Phys. 85, 1 (1999).

    Article  CAS  Google Scholar 

  11. D.R. Frear and P.T. Vianco, Metall. Mater. Trans. A 25A, 1509 (1994).

    Article  Google Scholar 

  12. C.F. Chan, S.K. Lahiri, P. Yuan, and J.B.H. How, Proc. 2000 Electron. Packag. Technol. Conf. 72 (2000).

    Article  CAS  Google Scholar 

  13. J.K. Lin, A. De. Silva, D. Frear, Y. Guo, J.W. Jang, L. Li, D. Mitchell, B. Yeung, and C. Zhang, Proc. Electron. Compon. Technol. Conf., 51st 455 (2001).

    Google Scholar 

  14. D. Frear, J.W. Jang, J.K. Lin, and C. Zhang, JOM 53, 28 (2001).

    Google Scholar 

  15. K.N. Tu, T.Y. Lee, J.W. Jang, L. Li, D.R. Frear, K. Zeng, and J. Kivilahti, J. Appl. Phys. 89, 4843 (2001).

    Article  CAS  Google Scholar 

  16. D. Frear, D. Grivas, and J.W. Morris Jr., J. Electron. Mater. 16, 181 (1987).

    Article  CAS  Google Scholar 

  17. H.P.R. Frederikse, R.J. Fields, and A. Feldman, J. Appl. Phys. 72, 2879 (1992).

    Article  CAS  Google Scholar 

  18. C-S. Oh, J-H. Shim, B-J. Lee, and D.N. Lee, J. Alloys Comp. 238, 155 (1996).

    Article  CAS  Google Scholar 

  19. J-H. Shim, C-S. Oh, B-J. Lee, and D.N. Lee, Z. Metallkd. 87, 205 (1996).

    Article  CAS  Google Scholar 

  20. F.H. Hayes, H.L. Lukas, G. Effenberg, and G. Petzow, Z. Metallkd. 77, 749 (1986).

    CAS  Google Scholar 

  21. L. Kaufinan and H. Bernstein, Computer Calculation of Phase Diagrams (Academic Press, New York, 1970).

    CAS  Google Scholar 

  22. W. Peng, K. Zeng, and J.K. Kivilahti, Helsinki University of Technology, Helsinki, Finland (unpublished work, 1999).

    Google Scholar 

  23. C.M. Miller, I.E. Anderson, and J.F. Smith, J. Electron. Mater. 23, 95 (1994).

    Google Scholar 

  24. M.E. Loomans and M.E. Fine, Metall. Mater. Trans. 31A, 1155 (2000).

    Google Scholar 

  25. K-W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000).

    Article  CAS  Google Scholar 

  26. B.E. Dyson, T.R. Anthony, and D. Turnbull, J. Appl. Phys. 38, 3408 (1967).

    Article  CAS  Google Scholar 

  27. B.F. Dyson, J. Appl. Phys. 37, 2375 (1966).

    Article  CAS  Google Scholar 

  28. H.K. Kim and K.N. Tu, Phys. Rev. B 53, 16027 (1996).

    Article  CAS  Google Scholar 

  29. I.V. Belova and G.E. Murch, J. Phys. Chem Solids 59, 1 (1997).

    Article  CAS  Google Scholar 

  30. K.N. Tu and R.D. Thompson, Acta Metall. 30, 947 (1982).

    Article  Google Scholar 

  31. C. Goria, Metall. Ital. 148, 358 (1956).

    Article  CAS  Google Scholar 

  32. A. Gervais and D. Keller, Physica C 246, 29 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, T.Y., Choi, W.J., Tu, K.N. et al. Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn–3.5Ag, Sn–3.8Ag–0.7Cu and Sn–0.7Cu) on Cu. Journal of Materials Research 17, 291–301 (2002). https://doi.org/10.1557/JMR.2002.0042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0042

Navigation