Skip to main content
Log in

Contact Deformation Regimes Around Sharp Indentations and the Concept of the Characteristic Strain

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Finite element simulations are performed to analyze the contact deformation regimes induced by a sharp indenter in elastic – power-law plastic solids. As the yield strength (σys) and strain hardening coefficient (n) decrease or, alternatively, as Young’s modulus (E) increases, the contact regime evolves from (i) an elastic–plastic transition, to (ii) a fully plastic contact response, and to (iii) a fully plastic regime where piling-up of material at the contact area prevails. In accordance with preliminary analyses by Johnson, it is found that Tabor’s equation, where hardness (H) = 2.7σr, applies within the fully plastic regime of elastic – power-law plastic materials. The results confirm the concept of the uniqueness of the characteristic strain, ∈r = 0.1, that is associated with the uniaxial stress, σr. A contact deformation map is constructed to provide bounds for the elastic–plastic transition and the fully plastic contact regimes for a wide range of values of σ ys, n, and E. Finally, the development of piling-up and sinking-in at the contact area is correlated with uniaxial mechanical properties. The present correlation holds exclusively within the fully plastic contact regime and provides a tool to estimate σ ys and n from indentation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Tabor, Hardness of Metals, (Clarendon Press, Oxford, United Kingdom, 1951).

    Google Scholar 

  2. R. Hill, E.H. Lee, and S.J. Tupper, Proc. R. Soc. A 188, 273 (1947).

    Google Scholar 

  3. F.J. Lockett, J. Mech. Phys. Solids 11, 345 (1963).

    Article  Google Scholar 

  4. W. Yu and J.P. Blanchard, J. Mater. Res. 11, 2358 (1996).

    Article  CAS  Google Scholar 

  5. R.F. Bishop, R. Hill, and N.F. Mott, Proc. Phys. Soc. 57, 147 (1945).

    Article  CAS  Google Scholar 

  6. D.M. Marsh, Proc. R. Soc. A 279, 420 (1964).

    Google Scholar 

  7. R. Hill, The Mathematical Theory of Plasticity (Clarendon Press, Oxford, United Kingdom, 1950).

    Google Scholar 

  8. W. Hirst and M.G.J.W. Howse, Proc. R. Soc. A 311, 429 (1969).

    Google Scholar 

  9. K.L. Johnson, J. Mech. Phys. Solids 18, 115 (1970).

    Article  Google Scholar 

  10. Y.A. Laursen and J.C. Simo, J. Mater. Res. 7, 618 (1992).

    Article  CAS  Google Scholar 

  11. A.E. Giannakopoulos, P-L. Larsson, and R. Vestergaard, Int. J. Solids Struct. 31, 2679 (1994).

    Article  Google Scholar 

  12. P-L. Larsson, A.E. Giannakopoulos, E. Söderlund, D.J. Rowcliffe, and R. Vestergaard, Int. J. Solids Struct. 33, 221 (1996).

    Article  Google Scholar 

  13. V. Marx and H. Balke, Acta Mater. 45, 3791 (1997).

    Article  CAS  Google Scholar 

  14. A. Bolshakov and G.M. Pharr, J. Mater Res. 13, 1049 (1998).

    Article  CAS  Google Scholar 

  15. M.M. Chaudhri, Acta Mater. 46, 3047 (1998).

    Article  CAS  Google Scholar 

  16. Y-T. Cheng and Z. Li, J. Mater. Res. 45, 2830 (2000).

    Article  Google Scholar 

  17. S. Biwa and B. Storåkers, J. Mech. Phys. Solids 43, 1303 (1995).

    Article  Google Scholar 

  18. A.F. Bower, N.A. Fleck, A. Needleman, and N. Ogbonna, Proc. R. Soc. A 441, 97 (1993).

    Google Scholar 

  19. K. Komvopoulos, J. Tribol. 110, 477 (1988).

    Article  Google Scholar 

  20. S.D. Mesarovic and N.A. Fleck, Proc. R. Soc. A 455, 2707 (1999).

    Article  Google Scholar 

  21. ABAQUS User’s Manual V5.8 (Hibbitt, Karlsson & Sorensen Inc., 1999).

  22. I.N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  23. J. Alcalá, A.C. Barone, and M. Anglada, Acta Mater. 48, 3451 (2000).

    Article  Google Scholar 

  24. G. Eason and R.T. Shield, ZAMP 11, 33 (1960).

    Google Scholar 

  25. J. Alcala, J. Am. Ceram. Soc. 83, 1977 (2000).

    Article  CAS  Google Scholar 

  26. R. Hill, B. Storåkers, and A.B. Zdunek, Proc. R. Soc. A 423, 301 (1989).

    CAS  Google Scholar 

  27. A.L. Norbury and T. Samuel, J. Iron Steel Inst. 17, 673 (1928).

    Google Scholar 

  28. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, United Kingdom, 1985).

    Book  Google Scholar 

  29. M. Mata, M. Anglada, and J. Alcala, Philos. Mag. A (in press).

  30. P-L. Larsson, Int. J. Mech. Sci. 43, 895 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Alcalá.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mata, M., Anglada, M. & Alcalá, J. Contact Deformation Regimes Around Sharp Indentations and the Concept of the Characteristic Strain. Journal of Materials Research 17, 964–976 (2002). https://doi.org/10.1557/JMR.2002.0144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0144

Navigation