Skip to main content
Log in

Growth and Characterization of Na0.5K0.5NbO3 Thin Films on Polycrystalline Pt80Ir20 Substrates

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Na0.5K0.5NbO3 thin films have been deposited onto textured polycrystalline Pt80Ir20 substrates using radio frequency magnetron sputtering. Films were grown in off- and on-axis positions relative to the target at growth temperatures of 500–700 °C and sputtering pressures of 1–7 Pa. The deposited films were found to be textured, displaying a mixture of two orientations (001) and (101). Films grown on-axis showed a prefered (001) orientation, while the off-axis films had a (101) orientation. Scanning electron microscopy showed that the morphology of the films was dependent on the substrate position and sputtering pressure. The low-frequency (10 kHz) dielectric constants of the films were found to be in the range of approximately 490–590. Hydrostatic piezoelectric measurements showed that the films were piezoelectric in the as-deposited form with a constant up to 14.5 pC/N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.T. Matthias, Phys. Rev. 75, 1771 (1949).

    Article  CAS  Google Scholar 

  2. M. Sayer and V. Chivukula, in Handbook of Thin Film Process Technology, edited by D.A. Glocker and S.I. Shah (Institute of Physics Publishing, Bristol, U.K., 1997).

  3. P. Vousden, Acta Crystallogr. 4, 545 (1951).

    Article  CAS  Google Scholar 

  4. G. Shirane, R. Newhnam, and R. Pepinski, Phys. Rev. 96, 581 (1954).

    Article  CAS  Google Scholar 

  5. L. Egerton and D.M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959).

    Article  CAS  Google Scholar 

  6. R.E. Jager and L. Egerton, J. Am. Ceram. Soc. 45, 209 (1962).

    Article  Google Scholar 

  7. L. Egerton and C.A. Bieling, Am. Ceram. Soc. Bull. 47, 1151 (1968).

    CAS  Google Scholar 

  8. S.S. Thöny, in Epitaxial Oxide Thin Films and Heterostructures, edited by D.K. Fork, J.M. Phillips, R. Ramesh, and R.M. Wolf (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 253.

  9. T.M. Graettinger, P.A. Morris, R.R. Woolcott, F.C. Zumsteg, A.F. Chow, and A.I. Kingon, in Ferroelectric Thin Films III, edited by E.R. Meyers, B.A. Tuttle, S.B. Desu, and P.K. Larsen (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 301.

  10. T.M. Graettinger, P.A. Morris, A. Roshko, A.I. Kingon, O. Auciello, D.J. Lichtenwalner, and A.F. Chow, in Epitaxial Oxide Thin Films and Heterostructures, edited by D.K. Fork, J.M. Phillips, R. Ramesh, and R.M. Wolf (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 265.

  11. G.J. Derderian, J.D. Barrie, K.A. Aitchison, and M.L. Mecartney, in Epitaxial Oxide Thin Films and Heterostructures, edited by D.K. Fork, J.M. Phillips, R. Ramesh, and R.M. Wolf (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 277.

  12. C-H. Cheng, Y. Xu, J.D. Mackenzie, J. Zhang, and L. Eyring, in Better Ceramics Through Chemistry V, edited by M.J. Hampden-Smith, W.G. Klemperer, and C.J. Brinker (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992), p. 383.

  13. C. Zaldo, D.S. Gill, R.W. Eason, J. Mendiola, and P.J. Chandler, Appl. Phys. Lett. 65, 502 (1994).

    Article  CAS  Google Scholar 

  14. S.H. Rou, T.M. Graettinger, O. Auciello, and A.I. Kingon, in Het-eroepitaxy of Dissimilar Materials, edited by R.F.C. Farrow, J.P. Harbison, P.S. Peercy, and A. Zangwill (Mater. Res. Soc. Symp. Proc. 221, Pittsburgh, PA, 1991), p. 65.

  15. A.M. Margolin, Z.S. Surovyak, I.N. Zakharchenko, V.A. Aleshin, and L.K. Chernysheneva, Sov. Phys. Tech. Phys. 33, 1435 (1988).

    Google Scholar 

  16. K. Takahashi, H. Ueda, T. Suzuki, and K. Kakegawa, Ferroelec-trics 95, 209 (1989).

    Article  CAS  Google Scholar 

  17. X. Wang, U. Helmersson, S. Olafsson, S. Rudner, L-D. Wernlund, and S. Gevorgian, Appl. Phys. Lett. 73, 927 (1998).

    Article  CAS  Google Scholar 

  18. L.R. Doolittle, Nucl. Instrum. Methods Phys. Res. B 9, 344 (1985).

    Article  Google Scholar 

  19. I. Petrov, I. Ivanov, V. Orlinov, and J-E. Sungren, J. Vac. Sci. Technol. 11, 2733 (1993).

    Article  CAS  Google Scholar 

  20. D.W. Hoffinan, J. Vac. Sci. Technol. A 8, 3707 (1990).

    Article  Google Scholar 

  21. D.W. Hoffman, J.S. Park, and T.S. Morley, J. Vac. Sci. Technol., A 12, 1451 (1994).

    Article  CAS  Google Scholar 

  22. V.J. Tennery and K.W. Hang, J. Appl. Phys. 39, 4749 (1968).

    Article  CAS  Google Scholar 

  23. X. Wang and U. Helmersson (unpublished results).

  24. M. Kubo, Y. Oumi, R. Miura, A. Stirling, and A. Miyamoto, Phys. Rev. B 56, 13535 (1997).

    Article  CAS  Google Scholar 

  25. H.C. Zeng, T.C. Chong, L.C. Lim, H. Kumagai, and M. Hirano, J. Cryst. Growth 160, 289 (1996).

    Article  CAS  Google Scholar 

  26. H.C. Zeng, T.C. Chong, L.C. Lim, H. Kumagai, and M. Hirano, J. Cryst. Growth 160, 196 (1996).

    Google Scholar 

  27. I.S. Zheludev, Physics of Crystalline Dielectrics (Plenum Press, New York, 1971).

    Book  Google Scholar 

  28. I.K. Koo and S.B. Desu, in Better Ceramics Through Chemistry V, edited by M.J. Hampden-Smith, W.G. Klemperer, and C.J. Brinker (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1994), p. 79.

  29. J-F. Li, D. Viehland, C.D.E. Lakeman, and D.A. Payne, J. Mater. Res. 10, 1435 (1995).

    Article  CAS  Google Scholar 

  30. G.H. Haertling, J. Am. Ceram. Soc. 50, 329 (1967).

    Article  CAS  Google Scholar 

  31. D. Berlincourt, in Ultrasonic Materials, edited by O.E. Mattiat (Plenum Press, New York, 1971).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Olafsson, S., Madsen, L.D. et al. Growth and Characterization of Na0.5K0.5NbO3 Thin Films on Polycrystalline Pt80Ir20 Substrates. Journal of Materials Research 17, 1183–1191 (2002). https://doi.org/10.1557/JMR.2002.0175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0175

Navigation