Skip to main content
Log in

X-ray photoelectron spectroscopy characterization and morphology of MgO thin films grown on single-crystalline diamond (100)

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The morphology and composition of MgO films grown on single-crystalline diamond (100) have been studied. MgO thin films were deposited in the substrate temperature range from room temperature (RT) to 723 K by means of electron beam evaporation using a MgO powder source. Atomic force microscopy images indicated that the film grown at RT without O2 supply was relatively uniform and flat whereas that deposited in oxygen ambient yielded higher growth rates and rough surface morphologies. X-ray photoelectron spectroscopy analyses demonstrate that the MgO film deposited at RT without O2 has the composition closest to that of the stoichiometric MgO and that a thin contaminant layer composed mainly of magnesium peroxide (before etching) or hydroxide (after etching) was unintentionally formed on the film surface, respectively.These results will be discussed in relation to the interaction among the evaporated species and intentionally supplied oxygen molecules at the growth front as well as the interfacial energy between diamond and MgO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.C. Wu, J.S. Corneille, C.A. Estrada, J.W. He, and D.W. Goodman, Chem. Phys. Lett. 182, 472 (1991).

    Article  CAS  Google Scholar 

  2. M. Baumer, D. Cappus, H. Kuhlenbeck, H.J. Freund, G. Wilhelmi, A. Brodde, and H. Neddermeyer, Surf. Sci. 253, 116 (1991).

    Article  Google Scholar 

  3. H.C. Galloway, J.J. Benitze, and M. Salmeron, Surf. Sci. 298, 127 (1993).

    Article  CAS  Google Scholar 

  4. X. Xu and D.W. Goodman, Appl. Phys. Lett. 61, 774 (1992).

    Article  CAS  Google Scholar 

  5. V. Maurice, M. Salmeron, and G.A. Somorjai, Surf. Sci. 273, 116 (1990).

    Article  Google Scholar 

  6. D.K. Fork, K. Nashmoto, and T.H. Geballe, Appl. Phys. Lett. 60, 1621 (1992).

    Article  CAS  Google Scholar 

  7. L.D. Chang, M.Z. Tseng, E.L. Hu, and D.K. Fork, Appl. Phys. Lett. 60, 3129 (1992).

    Article  Google Scholar 

  8. K. Nashimoto, D.K. Fork, and T.H. Geballe, Appl. Phys. Lett. 60, 1199 (1992).

    Article  CAS  Google Scholar 

  9. W.Y. Hsu and R. Raj, Appl. Phys. Lett. 60, 3015 (1992).

    Google Scholar 

  10. L.S. Hung, C.W. Tang, and M.G. Mason, Appl. Phys. Lett. 70, 152 (1997).

    Article  CAS  Google Scholar 

  11. D.K. Fork, F.A. Ponce, J.C. Tramontana, and T.H. Geballe, Appl. Phys. Lett. 58, 2294 (1991).

    Article  CAS  Google Scholar 

  12. P. Tiwari, S. Sharan, and J. Naryan, J. Appl. Phys. 69, 8358 (1991).

    Article  CAS  Google Scholar 

  13. A. Masuda and K. Nashimoto, Jpn. J. Appl. Phys. 33(6A), L793 (1994).

    Article  CAS  Google Scholar 

  14. D. Peterka, C. Tegenkamp, K.M. Schröder, W. Ernst, and H. Pfnür, Surf. Sci. 431, 146 (1999).

    Article  CAS  Google Scholar 

  15. H.H. Huang, X. Jiang, H.L. Siew, W.S. Chin, W.S. Sim, and G.Q. Xu, Surf. Sci. 436, 167 (1999).

    Article  CAS  Google Scholar 

  16. I.J. Malik, J. Hrbek, M.L. Shek, A. Bzowski, P. Kristof, and T.K. Sham, J. Vac. Sci. Technol. A 10, 2367 (1992).

    Article  CAS  Google Scholar 

  17. H. Namba, J. Darville, and J.M. Gilles, Surf. Sci. 108, 446 (1981).

    Article  CAS  Google Scholar 

  18. B.E. Hayden, E. Schweizer, R. Kötz, and A.M. Bradshaw, Surf. Sci. 111, 26 (1981).

    Article  CAS  Google Scholar 

  19. P.A. Thiry, J. Ghijsen, R. Sporken, J.J. Pireaux, R.L. Johnson, and R. Caudano, Phys. Rev. B 39, 3620 (1989).

    Article  CAS  Google Scholar 

  20. J.S. Corneille, J.W. He, and D.W. Goodman, Surf. Sci. 306, 269 (1994).

    Article  CAS  Google Scholar 

  21. J. Wollschläger, J. Viernow, C. Tegenkamp, D. Erdös, K.M. Schröder, and H. Pfnür, Appl. Surf. Sci. 142, 129 (1999).

    Article  Google Scholar 

  22. A.W. Czanderna, Method of Surface Analysis (Elsevier, New York, 1975), p. 140.

    Google Scholar 

  23. L.H. Tjeng, A.R. Vos, and G.A. Sawatzky, Surf. Sci. 235, 269 (1990).

    Article  CAS  Google Scholar 

  24. A.I. Boldyrev and J. Simons, J. Chem. Phys. 100, 8023 (1996).

    Article  CAS  Google Scholar 

  25. X.D. Peng and M.A. Barteau, Surf. Sci. 233, 283 (1990).

    Article  CAS  Google Scholar 

  26. D.K. Fork, F.A. Ponce, J.C. Tramontana, and T.H. Geballe, Appl. Phys. Lett. 58, 2294 (1991).

    Article  CAS  Google Scholar 

  27. L.S. Hung, L.R. Zheng, and T.N. Blanton, Appl. Phys. Lett. 60, 4129 (1992).

    Google Scholar 

  28. S. Tanaka, H. Nakanishi, N. Matsuura, K. Higaki, H. Itosaki, and S. Yazu, Sumitomo Denki 138, 152 (1991).

    Google Scholar 

  29. R. Nyhoom, A. Berndtsson, and N. Martensson, J. Phys. C13, L1091 (1980).

    Google Scholar 

  30. S.M. Lee, H. Murakami, and T. Ito, Appl. Surf. Sci. 175–176, 517 (2001).

    Article  Google Scholar 

  31. J. Jupile, P. Dolle, and M. Besancon, Surf. Sci. 260, 271 (1992).

    Article  Google Scholar 

  32. B.E. Hopkins and D. Kubachewski, Oxidation of Metals and Alloys (Butterworths, London, United Kingdom, 1967).

    Google Scholar 

  33. J.C. Fuggle, L.M. Watson, D.J. Fabian, and S. Affrossman, Surf. Sci. 49, 61 (1975).

    Article  CAS  Google Scholar 

  34. Z.L. Wang, J. Bently, E.A. Kenik, L.L. Horton, and R.A. Mckee, Surf. Sci. 273, 88 (1992).

    Article  CAS  Google Scholar 

  35. R. Martinez and M.A. Barteau, Langmuir 1, 684 (1985).

    Article  CAS  Google Scholar 

  36. D. Briggs and M.P. Seah, Practical Surface Analysis, 2nd ed. (Wiley, NY, 1990), p. 247.

    Google Scholar 

  37. D.R. Penn, J. Electron Spectrosc. Relat. Phenom. 9, 29 (1976).

    Article  CAS  Google Scholar 

  38. J. Ghijsen, H. Namba, P.A. Thiry, J.J. Pireaux, and P. Caudano, Appl. Surf. Sci. 8, 397 (1981).

    Article  CAS  Google Scholar 

  39. J.C. Fuggle, L.M. Watson, D.J. Fabian, and S. Affrossman, J. Phys. F5, 375 (1975).

    Article  Google Scholar 

  40. D.J. Dwyer, S.D. Cameron, and J.L. Gland, Surf. Sci. 159, 430 (1985).

    Article  CAS  Google Scholar 

  41. V.E. Henrich, G. Dresselhaus, and H.J. Zeigor, Phys. Rev. Lett. 26, 1335 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.M., Ito, T. & Murakami, H. X-ray photoelectron spectroscopy characterization and morphology of MgO thin films grown on single-crystalline diamond (100). Journal of Materials Research 17, 1914–1922 (2002). https://doi.org/10.1557/JMR.2002.0284

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0284

Navigation