Skip to main content
Log in

Synthesis and dielectric properties of barium tantalates and niobates with complex perovskite structure

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Phase composition, degree of cation ordering, and dielectric properties of complex perovskites with general formula Ba(B’ 1/3B"2/3)O3, where B′ = Mg, Zn, and Ni and B" = Nb and Ta, were analyzed. It was found that all the studied complex perovskites attained high degrees of 1:2 cation ordering at temperatures specific to each composition. A high temperature order–disorder phase transition in Ba(Zn1/3Nb2/3)O3 occurred below 1380 °C. Ba(Ni1/3Nb2/3)O3 (BNN) and Ba(Mg1/3Nb2/3)O3 (BMN) pervoskites remained 100% ordered at temperatures as high as 1500 and 1620 °C, respectively. It was found that in BMN and BNN extrinsic factors, such as the second phase (i.e., Ba3Nb5O15) and point defects, dominated the dielectric loss at microwave frequencies. Ba(Mg1/3Ta2/3)O3 (BMT) remained single phase up to 1630 °C. Above this temperature, the Ba3Ta5O15 second phase was detected. A decrease in the 1:2 cation ordering and increase of dielectric loss in BMT occurred at sintering temperatures above 1590 °C. It was also revealed by electron paramagnetic resonance that all samples studied contained a substantial amount of paramagnetic point defects. These defects contributed to extrinsic dielectric loss at microwave frequencies, thus degrading the Q factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ceramic Transaction: Materials and Processes for Wireless Communication, edited by T. Negas and H. Ling (American Ceramic Society Publications, Westerville, OH, 1995), Vol. 53.

    Google Scholar 

  2. N. Klein, A. Scholen, N. Tellmann, C. Zuccaro, and K.W. Urban, IEEE Trans. Microwave Theory Tech. 44, 1369 (1996).

    Article  CAS  Google Scholar 

  3. P.K. Davies, J. Tong, and T. Negas, J. Am. Ceram. Soc. 80, 1727 (1997).

    Article  CAS  Google Scholar 

  4. H. Matsumoto, H. Tamura, and K. Wakino, Jpn. J. Appl. Phys. 30, 2347 (1991).

    Article  CAS  Google Scholar 

  5. J. Petzelt and N. Setter, Ferroelectrics 150, 89 (1993).

    Article  Google Scholar 

  6. G. Rong, N. Newman, B. Shaw, and D. Cronin, J. Mater. Res. 14, 4011 (1999).

    Article  CAS  Google Scholar 

  7. V.L. Gurevich and A.K. Tagantsev, Adv. Phys. 40, 719 (1991).

    Article  CAS  Google Scholar 

  8. S-H. Ra and P.P. Phule, J. Mater. Res. 14, 4259 (1999).

    Article  CAS  Google Scholar 

  9. Y. Fang, A. Hu, S. Ouyang, and J. Oh, J. Eur. Ceram. Soc. 21, 2745 (2001).

    Article  CAS  Google Scholar 

  10. MuRata Electronics North America, RF and Microwave Products Catalog (1996).

  11. S. Nomura, Ferroelectrics 49, 61 (1983).

    Article  CAS  Google Scholar 

  12. M.A. Akbas and P.K. Davies, J. Am. Ceram. Soc. 81, 670 (1998).

    Article  CAS  Google Scholar 

  13. H.J. Lee, H.M. Park, Y.K. Cho, H. Ryu, J.H. Paik, S. Nahm, and J.D. Byun, J. Am. Ceram. Soc. 83, 937 (2000).

    Article  CAS  Google Scholar 

  14. H.J. Lee, H.M. Park, Y.W. Song, and Y.K. Cho, J. Am. Ceram. Soc. 84, 2105 (2001).

    Article  CAS  Google Scholar 

  15. H. Tamura, T. Konoike, Y. Sakabe, and K. Wakino, J. Am. Ceram. Soc. 67, 59 (1984).

    Article  Google Scholar 

  16. H. Banno, F. Mizuno, T. Takeuchi, T. Tsunooka, and K. Ohya, Proceedings of the 5th Meeting on Ferroelectric Materials and Their Applications (Jpn. J. Appl. Phys. 21, Supplement 24-3, 1985), p. 87.

    Article  Google Scholar 

  17. M. Onoda, J. Kuwata, K. Kaneta, K. Toyama, and S. Nomura, Jpn. J. Appl. Phys. 21, 1707 (1982).

    Article  CAS  Google Scholar 

  18. F. Galasso and J. Pyle, J. Phys. Chem. 67, 1561 (1963).

    Article  CAS  Google Scholar 

  19. T. Hiuga and K. Matsumoto, Jpn. J. Appl. Phys. 28, 56 (1989).

    Article  CAS  Google Scholar 

  20. D.J. Barber, K.M. Moulding, J. Zhou, and M.Q. Li, J. Mater. Sci. 32, 1531 (1997).

    Article  CAS  Google Scholar 

  21. H. Yoshioka, Bull. Chem. Soc. Jpn. 60, 3433 (1987).

    Article  CAS  Google Scholar 

  22. M.A. Akbas and P.K. Davies, J. Am. Ceram. Soc. 81, 1061 (1998).

    Article  CAS  Google Scholar 

  23. K.S. Hong, I-T. Kim, and C-D. Kim, J. Am. Ceram. Soc. 79, 3218 (1996).

    Article  CAS  Google Scholar 

  24. I. Molodetsky and P.K. Davies, J. Eur. Ceram. Soc. 21, 2587 (2001).

    Article  CAS  Google Scholar 

  25. J. Venkatesh, V. Sivasubramanian, V. Subramanian, and V.R.K. Murthy, Mater. Res. Bull. 35, 1325 (2000).

    Article  CAS  Google Scholar 

  26. I. Qazi, I.M. Reaney, and W.E. Lee, J. Eur. Ceram. Soc. 21, 2613 (2001).

    Article  CAS  Google Scholar 

  27. T. Takahashi, E.J. Wu, and G. Ceder, J. Mater. Res. 15, 2061 (2000).

    Article  CAS  Google Scholar 

  28. T. Takahashi, Jpn. J. Appl. Phys. 39, 5637 (2000).

    Article  CAS  Google Scholar 

  29. T.V. Kolodiazhnyi, A. Petric, G.P. Johari, and A.G. Belous, J. Eur. Ceram. Soc. 22, 2013 (2002).

    Article  CAS  Google Scholar 

  30. D. Kajfez and P. Guillon, Dielectric Resonators (Artech Hause, Dedham, MA, 1986).

    Google Scholar 

  31. X.M. Chen, Y. Suzuki, and N. Sato, J. Mater. Sci., Mater. Electron. 5, 244 (1994).

    Article  CAS  Google Scholar 

  32. H-J. Youn, K-Y. Kim, and H. Kim, Jpn. J. Appl. Phys. 35, 3947 (1996).

    Article  CAS  Google Scholar 

  33. C.R. Feger and R.P. Ziebarth, Chem. Mater. 7, 373 (1995).

    Article  CAS  Google Scholar 

  34. B. Hessen, S.A. Sunshine, T. Siegrist, A.T. Fiory, and J.V. Waszczak, Chem. Mater. 3, 528 (1991).

    Article  CAS  Google Scholar 

  35. S. Nomura, K. Toyama, and K. Kaneta, Jpn. J. Appl. Phys. 21, L624 (1982).

    Article  Google Scholar 

  36. K. Matsumoto, T. Hiuga, K. Takada, and H. Ichimura, 6th IEEE International Symposium on Applications of Ferroelectrics (IEEE, Piscataway, NJ, 1986), p. 118.

    Book  Google Scholar 

  37. S.B. Desu and H.M. O’Bryan, J. Am. Ceram. Soc. 68, 546 (1985).

    Article  CAS  Google Scholar 

  38. S. Kawashima, N. Nishada, I. Ueda, and H. Ouchi, J. Am. Ceram. Soc. 66, 421 (1983).

    Article  CAS  Google Scholar 

  39. F.S. Galasso, Structure, Properties and Preparation of Perovskite-Type Compounds (Pergamon Press, Oxford, U.K., 1969).

    Google Scholar 

  40. C-C. Lee, C-C. Chou, and D-S. Tsai, J. Am. Ceram. Soc. 80, 2885 (1997).

    Article  CAS  Google Scholar 

  41. J. Bartoll (private communication).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Petric.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolodiazhnyi, T., Petric, A., Belous, A. et al. Synthesis and dielectric properties of barium tantalates and niobates with complex perovskite structure. Journal of Materials Research 17, 3182–3189 (2002). https://doi.org/10.1557/JMR.2002.0460

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0460

Navigation