Skip to main content
Log in

Sonochemical method for the synthesis of antimony sulfide microcrystallites with controllable morphology

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Spindlelike, rodlike, starlike, and spherical antimony sulfide (Sb2S3) microcrystallites have successfully been synthesized via a sonochemical method at room temperature. The x-ray diffraction pattern analysis based on the Rietveld method demonstrates that ultrasound can convert the structure of Sb2S3 from amorphous phase to crystalline phase. The crystallinity and morphology of Sb2S3 particles can be modified by using different solvents or solutions. It is found that the spindlelike and starlike particles result from the aggregation of nanoparticles while the rodlike particles arise from epitaxial growth. Due to the quantum confinement effect of charge carriers in small microcrystalline volumes, the characteristic peaks in the optical absorption spectrum of the synthesized 0.001 M Sb2S3 (<100 nm) colloidal solutions are blue-shifted by about 500 nm as compared to the bulk band gaps of Sb2S3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Roy, B.R. Chakbraborty, R. Bhattacharya, and A.K. Dutta, Solid State Commun. 25, 937 (1978).

    Article  CAS  Google Scholar 

  2. D. Arivuoli, F.D. Gnanam, and P. Ramasamy, J. Mater. Sci. Lett. 7, 711 (1988).

    Article  CAS  Google Scholar 

  3. N.Kh. Abrikosov, V.F. Bankina, L.V. Poretakaya, L.E. Shelimova, and E.V. Skudnova, in Semiconducting II–VI and V–VI Compounds, edited by A. Tybulewicz (Plenum, New York, 1969), p. 186.

  4. A.S. Karpus and M.F. Mikalkevichus, Litovsk. Fiz. Sb. 2, 151 (1962).

    CAS  Google Scholar 

  5. S.H. Yu, L. Shu, Y.S. Wu, Y.T. Qian, Y. Xie, and L. Yang, Mater. Res. Bull. 33, 1207 (1998).

    Article  CAS  Google Scholar 

  6. B.F. Variano, D.M. Hwang, C.J. Sandroff, P. Wiltzius, T.W. Jind, and N.P. Ong, J. Phys. Chem. 91, 6455 (1987).

    Article  CAS  Google Scholar 

  7. C. Kaito, Y. Saito, and K. Fujita, J. Cryst. Growth 94, 967 (1989).

    Article  CAS  Google Scholar 

  8. K.S. Suslick, S.B. Choe, A.A. Cichowlas, and M.W. Grinstaff, Nature 353, 414 (1991).

    Article  CAS  Google Scholar 

  9. Yu. Koltypin, G. Katabi, R. Prozorov, and A. Gedanken, J. Non-Cryst. Solids 201, 159 (1996).

  10. Y. Nagata, Y. Mizukoshi, K. Okitsu, and Y. Maeda, Radiat. Res. 146, 33 (1996).

    Article  Google Scholar 

  11. K. Okitsu, Y. Mizukoshi, H. Bandow, Y. Maeda, T. Yamamote, and T. Nagata, Ultrasound Sonochem. 3, 249 (1996).

    Article  Google Scholar 

  12. T. Hyeon, M. Fand, and K.S. Suslick, J. Am. Chem. Soc. 118, 5492 (1996).

    Article  CAS  Google Scholar 

  13. X. Cao, Yu. Koltypin, G. Katabi, I. Felner, and A. Gedanken, J. Mater. Res. 12, 405 (1997).

    Google Scholar 

  14. N. Arul Dhas and A. Gedanken, J. Phys. Chem. B 101, 9495 (1997).

    Article  CAS  Google Scholar 

  15. J.J. Zhu, S.T. Aruna, Yu. Koltypin, and A. Gedanken, Chem. Mater. 12, 143 (2000).

    Article  CAS  Google Scholar 

  16. A. Kyono, M. Kimata, M. Matsuhisa, Y. Miyashita, and K. Okamoto, Phys. Chem. Minerals 29, 254 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J.H., Chen, Z., Wang, Z.L. et al. Sonochemical method for the synthesis of antimony sulfide microcrystallites with controllable morphology. Journal of Materials Research 18, 1804–1808 (2003). https://doi.org/10.1557/JMR.2003.0250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0250

Navigation