Skip to main content
Log in

Ignition mechanism of mechanically activated Me–Si(Me = Ti, Nb, Mo) mixtures

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The influence of mechanical activation on the characteristics and mechanism of ignition of self-propagating high-temperature synthesis processes of different silicides in the systems Me–Si (Me =Ti, Nb, Mo) was investigated. The results show that mechanical activation does not alter the mechanism involved but influences significantly the ignition characteristics. The influence, however, strongly depends on the stoichiometry of the mixtures. The composition Ti:Si = 1:2 shows the largest influence, with the ignition temperatures decreasing from 1400 °C for unmilled powders to about 600 °C for powders milled for several hours. The compositionsTi:Si = 5:3, Nb:Si = 1:2 show less pronounced decreases, while the compositionMo:Si = 1:2 shows no decrease. These differences are discussed in terms of the role of microstructure in the reaction mechanism and the different response of the systems to contamination, particularly from oxygen. The results suggest that for these systems self-ignition processes during milling cannot be explained only on the basis of the decrease in the ignition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Gaffet and N. Malhouroux-Gaffet, Nanocrystalline MoSi2 phase formation induced by mechanically activated annealing, J. Alloys Compd. 205, 27 (1994).

    Article  CAS  Google Scholar 

  2. B.K. Yen, T. Aizawa, and J. Kihara, Reaction synthesis of titanium silicides via self-propagating reaction kinetics, J. Am. Ceram. Soc. 81, 1953 (1998).

    Article  CAS  Google Scholar 

  3. F. Bernard, F. Charlot, E. Gaffet, and J.C. Niepce, Optimization of MASHS parameters to obtain a nanometric FeAl intermetallic, Int. J. Self-Propag. High-Temp. Synth. 7, 233 (1998).

    CAS  Google Scholar 

  4. F. Charlot, E. Gaffet, B. Zeghmati, B. Bernard, and J.C. Niepce, Mechanically activated synthesis studied by x-ray diffraction in the Fe-Al system, Mater. Sci. Eng. A 262, 279 (1999).

    Article  Google Scholar 

  5. F. Maglia, U. Anselmi-Tamburini, G. Cocco, M. Monagheddu, N. Bertolino, and Z.A. Munir, Combustion synthesis of mechanically activated powders in the Ti-Si system, J. Mater. Res. 16, 1074 (2001).

    Article  CAS  Google Scholar 

  6. M. Atzmon, In situ thermal observation of explosive compound-formation reaction during mechanical alloying, Phys. Rev. Lett. 64, 487 (1990).

    Article  CAS  Google Scholar 

  7. A.A. Popovich, V.P. Reva, V.N. Vasilenko, and O.A. Belous, Mechanochemical technology of synthesis of refractory compounds and alloys based on them, Mater. Sci. Forum 88–90, 737 (1992).

    Article  Google Scholar 

  8. E. Ma, J. Pagan, G. Cranford, and M. Atzmon, Evidence for self-sustained molybdenum disilicide formation during room-temperature high-energy ball milling of elemental powders, J. Mater. Res. 8, 1836 (1993).

    Article  CAS  Google Scholar 

  9. L. Takacs, Self-sustaining reactions induced by ball milling, Prog. Mater. Sci. 47, 355 (2002).

    Article  CAS  Google Scholar 

  10. G.B. Schaffer and P.G. McCormick, Anomalous combustion effects during mechanical alloying, Metall. Trans. 22A, 3019 (1991).

    Article  CAS  Google Scholar 

  11. Ch. Gras, D. Vrel, E. Gaffet, and F. Bernard, Mechanical activation effect on the self-sustaining combustion reaction in the Mo–Si system, J. Alloys Compd. 314, 240 (2001).

    Article  CAS  Google Scholar 

  12. H-S. Park, K-S. Shin, and T-S. Kim, Effect of mechanical alloying on combustion synthesis of MoSi2, J. Mater. Res. 16, 3060 (2001).

    Article  CAS  Google Scholar 

  13. V.N. Vilunov and V.E. Zarko, Ignition of solids (Elsevier Science Publishers, Amsterdam, Oxford, New York, Tokyo, 1989).

  14. V.V. Barzykin, Initiation of SHS processes, Pure Appl. Chem. 64, 909 (1992).

    Article  CAS  Google Scholar 

  15. J. Trambukis and Z.A. Munir, Effect of particle dispersion on the mechanism of combustion synthesis of titanium silicide, J. Am. Ceram. Soc. 73, 1240 (1990).

    Article  CAS  Google Scholar 

  16. A.G. Merzhanov and A.E. Averson, Present state of the thermal ignition theory: Invited review, Combust. Flame 16, 89 (1971).

    Article  CAS  Google Scholar 

  17. A.G. Strunina, T.M. Martem’yanova, V.V. Barzykin, and V.I. Ermakov, Ignition of gasless systems by a combustion wave, Fiz. Goreniya Vizryva 10, 518 (1974).

    CAS  Google Scholar 

  18. A.G. Strunina, N.I. Vaganova, and V.V. Barzykin, Energy analysis of ignition process for gasless systems by a combustion wave, Fiz. Goreniya Vizryva 13, 835 (1977).

    Google Scholar 

  19. Y. Zhang and G. Stangle, Ignition criteria for self-propagating combustion synthesis, J. Mater. Res. 8, 1703 (1993).

    Article  CAS  Google Scholar 

  20. Y. Zhang and G. Stangle, A micromechanistic model of the combustion synthesis process: Part II. Numerical simulation, J. Mater. Res. 9, 2605 (1994).

    Article  CAS  Google Scholar 

  21. C.H. He and G. Stangle, The mechanism and kinetics of the niobium-carbon reaction under self-propagating high-temperature synthesis-like conditions, J. Mater. Res. 10, 2829 (1995).

    Article  CAS  Google Scholar 

  22. S. Doppiu, M. Monagheddu, G. Cocco, F. Maglia, U. Anselmi-Tamburini, and Z.A. Munir, Mechanochemistry of the titanium-silicon system: Compositional effects, J. Mater. Res. 16, 1266 (2001).

    Article  CAS  Google Scholar 

  23. Y-S. Kwon, K.B. Gerasimov, and S-K. Yoon, Ball temperatures during mechanical alloying in planetary mills, J. Alloys and Compd. 346, 276 (2002).

    Article  CAS  Google Scholar 

  24. J.N. Woolman, J.J. Petrovic, and Z.A. Munir, Incorporating Mg into the Si sub-lattice of molybdenum disilicide, Scripta Mater. 48, 819 (2003).

    Article  CAS  Google Scholar 

  25. M. Sannia, R. Orrù, J.E. Garay, G. Cao, and Z.A. Munir, Effect of phase transformation during high energy milling on field activated synthesis of dense MoSi2, Mater. Sci. Eng. A 345, 270 (2003).

    Article  Google Scholar 

  26. Z.A. Munir and U. Anselmi Tamburini, Self-propagating exothermic reactions: The synthesis of high-temperature materials by combustion, Mater. Sci. Rep. 3, 277 (1989).

    Article  CAS  Google Scholar 

  27. B.V. Cockeram and R.A. Rapp, The kinetics of multilayered ti-tanium-silicide coatings grown by the pack cementation method, Metall. Mater. Trans. 26A, 777 (1995).

    Article  CAS  Google Scholar 

  28. J.F. Jongste, P.F. Alkemande, G.C.A. Janssen, and S.Radelaar, Kinetics of the formation of C49 TiSi2 from Ti-Si multilayers as observed by in-situ stress measurements, J. Appl. Phys. 74, 3869 (1993).

    Article  CAS  Google Scholar 

  29. M. Atzmon, The effect of interfacial diffusion-barriers on the ignition of self-sustained reactions in metal-metal diffusion couples, Metall. Trans. 23A, 49 (1992).

    Article  CAS  Google Scholar 

  30. R.R. De Avillez, L.A. Clevenger, and C.V. Thompson, Quantitative investigation of titanium/amorphous-silicon multilayer thin film reactions, J. Mater. Res. 5, 593 (1990).

    Article  Google Scholar 

  31. L.A. Clavenger, C. Cabral, R.A. Ray, C. Lavoie, J. Jordan-Sweet, S. Brauer, G. Morales, K.F. Ludwig, and G.B. Stephenson, Formation of a crystalline metal-rich silicide in thin film titanium/ silicon reactions, Thin Solid Films 289, 220 (1996).

    Article  Google Scholar 

  32. R. Cocchi, D. Giubertoni, G. Ottaviani, T. Marangon, G. Mastracchio, G. Queirolo, and A. Sabbadini, Initial reactions in Ti-Si bilayers: New indications from in situ measurements, J. Appl. Phys. 89, 6079 (2001).

    Article  CAS  Google Scholar 

  33. L.A. Clavenger, J.M.E. Harper, C. Cabral, C. Nobili, G. Ottaviani, and R. Mann, Kinetic-analysis of C49-TiSi2 and C54-TiSi2 formation at rapid thermal annealing rates, J. Appl. Phys. 72, 4978 (1992).

    Article  Google Scholar 

  34. R. Butz, G.W. Rubloff, T.Y. Tan, and P.S. Ho, Chemical and structural aspects of reaction at the Ti/Si interface, Phys. Rev. B. 30, 5421 (1984).

    Article  CAS  Google Scholar 

  35. M.H. Wang and L.J. Chen, Phase formation in the interfacial reactions of ultrahigh-vacuum deposited titanium thin-films on (111) Si, J. Appl. Phys. 71, 5918 (1992).

    Article  CAS  Google Scholar 

  36. R.J. Kasica and E.J. Cotts, The enthalphy of formation of thin film titanium disilicide, J. Appl. Phys. 82, 1488 (1997).

    Article  CAS  Google Scholar 

  37. G.W. Rubloff, R.M. Tromp, and E.J. van Loenen, Material reaction and silicide formation at the refractory metal/silicon interface, Appl. Phys. Lett. 48, 1600 (1986).

    Article  CAS  Google Scholar 

  38. G.G. Bentini, R. Nipoti, A. Armigliato, M. Berti, A.V. Drigo, and C. Cohen, Growth and structure of titanium silicide phases formed by thin Ti films on Si crystals, J. Appl. Phys. 57, 270 (1985).

    Article  CAS  Google Scholar 

  39. L.S. Hung, J. Gyulai, J.W. Mayer, S.S. Lau, and M-A. Nicolet, Kinetics of TiSi2 formation by thin Ti films on Si, J. Appl. Phys. 54, 5076 (1983).

    Article  CAS  Google Scholar 

  40. S.A. Chambers, D.M. Hill, F. Xu, and J.H. Weaver, Silicide formation at the Ti/Si(111) interface: Diffusion parameters and behavior at elevated temperatures, Phys. Rev. B 35, 634 (1987).

    Article  CAS  Google Scholar 

  41. R. Beyers, Thermodynamic considerations in refractory metal-silicon-oxygen systems, J. Appl. Phys. 56, 147 (1984).

    Article  CAS  Google Scholar 

  42. E. Horache, J.E. Fischer, and J. van der Spiegel, Niobium disili-cide formation by rapid thermal processing: Resistivity-grain growth correlation and the role of native oxide, J. Appl. Phys. 68, 4652 (1990).

    Article  CAS  Google Scholar 

  43. F.P. Incropera and D.P. DeWitt. Introduction to heat transfer (John Wiley & Sons Publishers, New York, 1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Anselmi-Tamburini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anselmi-Tamburini, U., Maglia, F., Doppiu, S. et al. Ignition mechanism of mechanically activated Me–Si(Me = Ti, Nb, Mo) mixtures. Journal of Materials Research 19, 1558–1566 (2004). https://doi.org/10.1557/JMR.2004.0209

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0209

Navigation