Skip to main content
Log in

Organic solar cells: An overview

  • Reviews—Organic Electronics Special Section
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Organic solar cell research has developed during the past 30 years, but especially in the last decade it has attracted scientific and economic interest triggered by a rapid increase in power conversion efficiencies. This was achieved by the introduction of new materials, improved materials engineering, and more sophisticated device structures. Today, solar power conversion efficiencies in excess of 3% have been accomplished with several device concepts. Though efficiencies of these thin-film organicdevices have not yet reached those of their inorganic counterparts (η ≈ 10–20%); the perspective of cheap production (employing, e.g., roll-to-roll processes) drives the development of organic photovoltaic devices further in a dynamic way. The two competitive production techniques used today are either wet solution processing or dry thermal evaporation of the organic constituents. The field of organic solar cells profited well from the development of light-emitting diodes based on similar technologies, which have entered the market recently. We review here the current status of the field of organic solar cells and discuss different production technologies as well as study the important parameters to improve their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Goetzberger, C. Hebling, and H-W. Schock: Photovoltaic materials, history, status and outlook. Mater. Sci. Eng. R 40, 1 (2003).

    Article  Google Scholar 

  2. G.A. Chamberlain: Organic solar cells: A review. Solar Cells 8, 47 (1983).

  3. D. Wöhrle and D. Meissner: Organic solar cells. Adv. Mater. 3, 129 (1991).

  4. C.J. Brabec, N.S. Sariciftci, and J.C. Hummelen: Plastic solar cells. Adv. Funct. Mater. 11, 15 (2001).

    Article  CAS  Google Scholar 

  5. J.J.M. Halls and R.H. Friend: in Clean Electricity from Photo-voltaics, edited by M.D. Archer and R. Hill (Imperial College Press, London, U.K., 2001).

  6. J. Nelson: Organic photovoltaic films. Curr. Opin. Solid State Mater. Sci. 6, 87 (2002).

  7. J-M. Nunzi: Organic photovoltaic materials and devices. C. R. Physique 3, 523 (2002).

  8. Organic Photovoltaics: Concepts and Realization; Vol. 60, edited by C.J. Brabec, V. Dyakonov, J. Parisi, and N.S. Sariciftci (Springer, Berlin, Germany, 2003).

  9. P. Peumans, A. Yakimov, and S.R. Forrest: Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93, 3693 (2003).

    Article  CAS  Google Scholar 

  10. Handbook of Conducting Polymers, Vol. 1-2, edited by T.A. Skotheim (Marcel Dekker, Inc., New York, 1986).

  11. Handbook of Organic Conductive Molecules and Polymers, Vol. 1-4, edited by H.S. Nalwa (John Wiley & Sons Ltd., Chichester, U.K., 1997).

  12. Handbook of Conducting Polymers, edited by T.A. Skotheim, R.L. Elsenbaumer, and J.R. Reynolds (Marcel Dekker, Inc., New York, 1998).

  13. Semiconducting Polymers, edited by G. Hadziioannou and P.F. van Hutten (Wiley-VCH, Weinheim, 2000).

  14. C. Winder and N.S. Sariciftci: Low Bandgap polymers for photon harvesting in bulk heterojunction solar cells. J. Mater. Chem. 14, 1077 (2004).

  15. C.D. Dimitrakopoulos and D.J. Mascaro: Organic thin-film transistors: A review of recent advances. IBM J. Res. Dev. 45, 11 (2001).

  16. J.J.M. Halls, K. Pichler, R.H. Friend, S.C. Moratti, and A.B. Holmes: Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell. Appl. Phys. Lett. 68, 3120 (1996).

    Article  CAS  Google Scholar 

  17. J.J.M. Halls and R.H. Friend: The photovoltaic effect in a poly(p-phenylenevinylene)/perylene heterojunction. Synth. Met. 85, 1307 (1997).

  18. H.R. Kerp, H. Donker, R.B.M. Koehorst, T.J. Schaafsma, and E.E. van Faassen: Exciton transport in organic dye layers for photovoltaic applications. Chem. Phys. Lett. 298, 302 (1998).

    Article  CAS  Google Scholar 

  19. T.J. Savanije, J.M. Warman, and A. Goossens: Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer. Chem. Phys. Lett. 287, 148 (1998).

    Article  Google Scholar 

  20. A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, E. Harth, A. Gügel, and K. Müllen: Ex-citon diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures. Phys. Rev. B 59, 15346 (1999).

    Article  CAS  Google Scholar 

  21. L.A.A. Pettersson, L.S. Roman, and O. Inganäs: Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 86, 487 (1999).

    Article  CAS  Google Scholar 

  22. M. Stoessel, G. Wittmann, J. Staudigel, F. Steuber, J. Blässing, W. Roth, H. Klausmann, W. Rogler, J. Simmerer, A. Winnacker, M. Inbasekaran, and E.P. Woo: Cathode-induced luminescence quenching in polyfluorenes. J. Appl. Phys. 87, 4467 (2000).

    Article  CAS  Google Scholar 

  23. T. Stübinger and W. Brütting: Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells. J. Appl. Phys. 90, 3632 (2001).

  24. Primary Photoexcitations in Conjugated Polymers: Molecular Exciton versus Semiconductor Band Model; edited by N.S. Sariciftci (World Scientific, Singapore, 1997).

  25. B.A. Gregg and M.C. Hanna: Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation. J. Appl. Phys. 93, 3605 (2003).

    Article  CAS  Google Scholar 

  26. I.D. Parker: Carrier tunneling and device characteristics in polymer light-emitting diodes. J. Appl. Phys. 75, 1656 (1994).

  27. A.K. Gosh, D.L. Morel, T. Feng, R.F. Shaw, and C.A. Rowe, Jr.: Photovoltaic and rectification properties of Al/Mg phthalocya-nine/Ag Schottky-barrier cells. J. Appl. Phys. 45, 230 (1974).

    Article  Google Scholar 

  28. D. Meissner, S. Siebentritt, and S. Günster: Charge carrier pho-togeneration in organic solar cells, presented at the International Symposium on Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XI: Photovoltaics, Photochemistry and Photoelectrochemistry, Toulouse, France, 1992.

  29. S. Karg, W. Riess, V. Dyakonov, and M. Schwoerer: Electrical and optical characterization of poly(phenylene-vinylene) light emitting diodes. Synth. Met. 54, 427 (1993).

    Article  CAS  Google Scholar 

  30. D.L. Morel, A.K. Gosh, T. Feng, E.L. Stogryn, P.E. Purwin, R.F. Shaw, and C. Fishman: High-efficiency organic solar cells. Appl. Phys. Lett. 32, 495 (1978).

    Article  CAS  Google Scholar 

  31. A.K. Gosh and T. Feng: Merocyanine organic solar cells. J. Appl. Phys. 49, 5982 (1978).

  32. S.M. Sze: Physics of Semiconductor Devices (John Wiley & Sons, New York, 1981).

  33. C.W. Tang: Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183 (1986).

  34. J. Rostalski and D. Meissner: Monochromatic versus solar efficiencies of organic solar cells. Sol. Energy Mater. Sol. Cells 61, 87 (2000).

  35. P. Peumanns, V. Bulovic, and S.R. Forrest: Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Appl. Phys. Lett. 76, 2650 (2000).

    Article  Google Scholar 

  36. M. Hiramoto, M. Suezaki, and M. Yokoyama: Effect of thin gold interstitial-layer on the photovoltaic properties of tandem organic solar cells. Chem. Lett. 19, 327 (1990).

    Article  Google Scholar 

  37. M. Hiramoto, H. Fujiwara, and M. Yokoyama: Three-layered organic solar cell with a photoactive interlayer of codeposited pigments. Appl. Phys. Lett. 58, 1062 (1991).

    Article  CAS  Google Scholar 

  38. M. Hiramoto, H. Fujiwara, and M. Yokoyama: p-i-n like behavior in three-layered organic solar cells having a co-deposited interlayer of pigments. J. Appl. Phys. 72, 3781 (1992).

    Article  CAS  Google Scholar 

  39. R.N. Marks, J.J.M. Halls, D.D.C. Bradley, R.H. Friend, and A.B. Holmes: The photovoltaic response in poly(p-phenylene vinylene) thin-film devices. J. Phys.: Condens. Matter. 6, 1379 (1994).

    CAS  Google Scholar 

  40. G. Yu, C. Zhang, and A.J. Heeger: Dual-function semiconducting polymer devices: Light-emitting and photodetecting diodes. Appl. Phys. Lett. 64, 1540 (1994).

    Article  CAS  Google Scholar 

  41. H. Antoniadis, B.R. Hsieh, M.A. Abkowitz, S.A. Jenekhe, and M. Stolka: Photovoltaic and photoconductive properties of aluminum/poly(p-phenylene vinylene) interfaces. Synth. Met. 62, 265 (1994).

    Article  CAS  Google Scholar 

  42. N.S. Sariciftci, L. Smilowitz, A.J. Heeger, and F. Wudl: Photo-induced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474 (1992).

    Article  CAS  Google Scholar 

  43. L. Smilowitz, N.S. Sariciftci, R. Wu, C. Gettinger, A.J. Heeger, and F. Wudl: Photoexcitation spectroscopy of conducting-polymer-C60 composites: Photoinduced electron transfer. Phys. Rev. B 47, 13835 (1993).

    Article  CAS  Google Scholar 

  44. C.H. Lee, G. Yu, D. Moses, K. Pakbaz, C. Zhang, N.S. Sariciftci, A.J. Heeger, and F. Wudl: Sensitization of the photoconductivity of conducting polymers by C60: Photoinduced electron transfer. Phys. Rev. B 48, 15425 (1993).

    Article  CAS  Google Scholar 

  45. S. Morita, A.A. Zakhidov, and K. Yoshino: Doping effect of buckminsterfullerene in conducting polymer: Change of absorption spectrum and quenching of luminescene. Solid State Commun. 82, 249 (1992).

    Article  CAS  Google Scholar 

  46. S. Morita, S. Kiyomatsu, X.H. Yin, A.A. Zakhidov, T. Noguchi, T. Ohnishi, and K. Yoshino: Doping effect of buckminster-fullerene in poly(2,5-dialkoxy-p-phenylene vinylene). J. Appl. Phys. 74, 2860 (1993).

    Article  CAS  Google Scholar 

  47. N.S. Sariciftci, D. Braun, C. Zhang, V.I. Srdanov, A.J. Heeger, G. Stucky, and F. Wudl: Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells. Appl. Phys. Lett. 62, 585 (1993).

    Article  CAS  Google Scholar 

  48. L.S. Roman, W. Mammo, L.A.A. Petterson, M.R. Andersson, and O. Inganäs: High quantum efficiency polythiophene/C60 photodiodes. Adv. Mater. 10, 774 (1998).

    Article  CAS  Google Scholar 

  49. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger: Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789 (1995).

    Article  CAS  Google Scholar 

  50. C.Y. Yang and A.J. Heeger: Morphology of composites of semiconducting polymers mixed with C60. Synth. Met. 83, 85 (1996).

  51. J.C. Hummelen, B.W. Knight, F. LePeq, F. Wudl, J. Yao, and C.L. Wilkins: Preparation and characterization of fulleroid and methanofullerene derivatives. J. Org. Chem. 60, 532 (1995).

    Article  CAS  Google Scholar 

  52. G. Yu and A.J. Heeger: Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor het-erojunctions. J. Appl. Phys. 78, 4510 (1995).

  53. J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, and A.B. Holmes: Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498 (1995).

    Article  CAS  Google Scholar 

  54. K. Tada, K. Hosada, M. Hirohata, R. Hidayat, T. Kawai, M. Onoda, M. Teraguchi, T. Masuda, A.A. Zakhidov, and K. Yoshino: Donor polymer (PAT6) - acceptor polymer (CNPPV) fractal network photocells. Synth. Met. 85, 1305 (1997).

    Article  CAS  Google Scholar 

  55. M. Granström, K. Petritsch, A.C. Arias, A. Lux, M.R. Anders-son, and R.H. Friend: Laminated fabrication of polymeric photovoltaic diodes. Nature 395, 257 (1998).

    Article  Google Scholar 

  56. P. Peumanns and S.R. Forrest: Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells. Appl. Phys. Lett. 79, 126 (2001).

  57. P. Peumans and S.R. Forrest: Erratum: Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells. Appl. Phys. Lett. 79, 126 (2001).

  58. J. Xue, S. Uchida, B.P. Rand, and S.R. Forrest: 4.2% efficient organic photovoltaic cells with low series resistances. Appl Phys. Lett. 84, 3013 (2004).

    Article  CAS  Google Scholar 

  59. S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, and J.C. Hummelen: 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841 (2001).

    Article  CAS  Google Scholar 

  60. J.M. Kroon, M.M. Wienk, W.J.H. Verhees, and J.C. Hummelen: Accurate efficiency determination and stability studies of conjugated polymer/fullerene solar cells. Thin Solid Films 403–404, 223 (2002).

  61. T. Munters, T. Martens, L. Goris, V. Vrindts, J. Manca, L. Lutsen, W.D. Ceunick, D. Vanderzande, L.D. Schepper, J. Gelan, N.S. Sariciftci, and C.J. Brabec: A comparison between state-of-the-art ‘gilch’ and ‘sulphinyl’ synthesised MDMO-PPV/PCBM bulk heterojunction solar cells. Thin Solid Films 403–404, 247 (2002).

  62. T. Aernouts, W. Geens, J. Portmans, P. Heremans, S. Borghs, and R. Mertens: Extraction of bulk and contact components of the series resistance in organic bulk donor-acceptor-heterojunctions. Thin Solid Films 403, 297 (2002).

    Article  Google Scholar 

  63. P. Schilinsky, C. Waldauf, and C.J. Brabec: Recombination and loss analysis in polythiophene based bulk heterojunction photo-detectors. Appl. Phys. Lett. 81, 3885 (2002).

    Article  CAS  Google Scholar 

  64. F. Padinger, R.S. Rittberger, and N.S. Sariciftci: Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 13, 1 (2003).

    Article  Google Scholar 

  65. M. Svensson, F. Zhang, S.C. Veenstra, W.J.H. Verhees, J.C. Hummelen, J.M. Kroon, O. Inganäs, and M.R. Andersson: High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Adv. Mater. 15, 988 (2003).

    Article  CAS  Google Scholar 

  66. M.M. Wienk, J.M. Kroon, W.J.H. Verhees, J. Knol, J.C. Hummelen, P.A. van Hall, and R.A.J. Janssen: Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew. Chem. Int. Ed. 42, 3371 (2003).

    Article  CAS  Google Scholar 

  67. W. Geens, T. Aernouts, J. Poortmans, and G. Hadziioannou: Organic co-evaporated films of a PPV-pentamer and C60: Model systems for donor/acceptor polymer blends. Thin Solid Films 403, 438 (2002).

    Article  Google Scholar 

  68. P. Peumans, S. Uchida, and S.R. Forrest: Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425, 158 (2003).

    Article  CAS  Google Scholar 

  69. B. Maennig, J. Drechsel, D. Gebeyehu, P. Simon, F. Kozlowski, A. Werner, F. Li, S. Grundmann, S. Sonntag, M. Koch, K. Leo, M. Pfeiffer, H. Hoppe, D. Meissner, S. Sariciftci, I. Riedel, V. Dyakonov, and J. Parisi: Organic p-i-n solar cells. Appl. Phys. A 79, 1 (2004).

    Article  CAS  Google Scholar 

  70. D. Gebeyehu, M. Pfeiffer, B. Maennig, J. Drechsel, A. Werner, and K. Leo: Highly efficient p-i-n type organic photovoltaic devices. Thin Solid Films 451–452, 29 (2004).

  71. J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, and U. Bach: High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Appl. Phys. Lett. 79, 2085 (2001).

    Article  CAS  Google Scholar 

  72. J. Krüger, R. Plass, M. Grätzel, and H-J. Matthieu: Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4-dicarboxy-2,2bipyridine)-bis(isothiocyanato) ruthenium(II). Appl. Phys. Lett. 81, 367 (2002).

    Article  CAS  Google Scholar 

  73. W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos: Hybrid Nanorod-Polymer Solar Cells. Science 295, 2425 (2002).

    Article  CAS  Google Scholar 

  74. H. Tributsch and M. Calvin: Electrochemistry of excited molecules. Photoelectrochemical reactions of chlorophylls. Photochem. Photobiol. 14, 95 (1971).

  75. H. Tributsch: Reaction of excited chlorophyll molecules at electrodes and in photosynthesis. Photochem. Photobiol. 16, 261 (1972).

  76. T. Osa and M. Fujihira: Photocell using covalently-bound dyes on semiconductor surfaces. Nature 264, 349 (1976).

  77. M. Fujihira, N. Ohishi, and T. Osa: Photocell using covalently-bound dyes on semiconductor surfaces. Nature 268, 226 (1977).

    Article  CAS  Google Scholar 

  78. H. Tsubomura, M. Matsumura, K. Nakatani, K. Yamamoto, and K. Maeda: ‘Wet-type’ solar cells with semiconductor electrodes. Sol. Energy 21, 93 (1978).

    Article  CAS  Google Scholar 

  79. M. Matsumura, S. Matsudaira, H. Tsubomura, M. Takata, and H. Yanagida: Sintered ZnO electrode for dye-sensitized photocell. Yogyo Kyokai Shi 87, 167 (1979).

    Article  Google Scholar 

  80. B. O’Regan and M. Grätzel: A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).

    Article  Google Scholar 

  81. K. Kalyanasundaram and M. Grätzel: Applications of function-alized transition metal complexes in photonic and optoelectronic devices. Coordin. Chem. Rev. 77, 347 (1998).

  82. M. Grätzel: Photoelectrochemical cells. Nature 414, 338 (2001).

  83. M. Grätzel: Dye-sensitized solar cells. J. Photochem. Photobiol. C 4, 145 (2003).

  84. U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, and M. Grätzel: Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583 (1998).

    Article  CAS  Google Scholar 

  85. J.S. Salafsky: Exciton dissociation, charge transport, and recombination in ultrathin, conjugated polymer-TiO2 nanocrystal intermixed composites. Phys. Rev. B 59, 10885 (1999).

    Article  CAS  Google Scholar 

  86. A.C. Arango, L.R. Johnson, V.N. Bliznyuk, Z. Schlesinger, S.A. Carter, and H-H. Hörhold: Efficient titanium oxide/ conjugated polymer photovoltaics for solar energy conversion. Adv. Mater. 89, 1689 (2000).

    Article  Google Scholar 

  87. Q. Fan, B. McQuillin, D.D.C. Bradley, S. Whitelegg, and A.B. Seddon: A solid state solar cell using sol–gel processed material and a polymer. Chem. Phys. Lett. 347, 325 (2001).

    Article  CAS  Google Scholar 

  88. D. Gebeyehu, C.J. Brabec, F. Padinger, T. Fromherz, S. Spiekermann, N. Vlachopoulos, F. Kienberger, H. Schindler, and N.S. Sariciftci: Solid state dye-sensitized TiO2 solar cells with poly(3-octylthiophene) as hole transport layer. Synth. Met. 121, 1549 (2001).

    Article  CAS  Google Scholar 

  89. Y. Saito, T. Kitamura, Y. Wada, and S. Yanagida: Poly(3,4-ethylenedioxythiophene) as a hole conductor in solid state dye sensitized solar cells. Synth. Met. 131, 185 (2002).

    Article  CAS  Google Scholar 

  90. N.C. Greenham, X. Peng, and A.P. Alivisatos: Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 54, 17628 (1996).

    Article  CAS  Google Scholar 

  91. E. Arici, N.S. Sariciftci, and D. Meissner: Hybrid solar cells based on nanoperticles of CuInS2 in organic matrices. Adv. Funct. Mater. 13, 165 (2003).

    Article  CAS  Google Scholar 

  92. P.A. van Hal, M.M. Wienk, J.M. Kroon, W.J.H. Verhees, L.H. Slooff, W.J.H. van Gennip, P. Jonkheijm, and R.A.J. Janssen: Photoinduced electron transfer and photovoltaic response of a MDMO-PPV:TiO2 bulk-heterojunction. Adv. Mater. 15, 118 (2003).

    Article  Google Scholar 

  93. M. Pientka, V. Dyakonov, D. Meissner, A. Rogach, D. Talapin, H. Weller, L. Lutsen, and D. Vanderzande: Photoinduced charge transfer in composites of conjugated polymers and semiconductor nanocrystals. Nanotechnology 15, 163 (2004).

    Article  CAS  Google Scholar 

  94. E. Arici, H. Hoppe, F. Schäffler, D. Meissner, M.A. Malik, and N.S. Sariciftci: Hybrid solar cells based on inorganic nanoclusters and semiconductive polymers. Thin Solid Films 451–452, 612 (2004).

  95. E. Arici, N.S. Sariciftci, and D. Meissner: in Encyclopedia of Nanoscience and Nanotechnology, edited by H.S. Nalwa (American Scientific Publishers, Stevenson Ranch, CA, 2004).

  96. H. Neugebauer, C. Brabec, J.C. Hummelen, and N.S. Sariciftci: Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells. Sol. Energy Mater. Sol. Cells 61, 35 (2000).

    Article  CAS  Google Scholar 

  97. F. Padinger, T. Fromherz, P. Denk, C.J. Brabec, J. Zettner, T. Hierl, and N.S. Sariciftci: Degradation of bulk heterojunction solar cells operated in an inert gas atmosphere: A systematic study. Synth. Met. 121, 1605 (2001).

    Article  CAS  Google Scholar 

  98. C.W. Tang and A.C. Albrecht: Photovoltaic effects of metal-chlorophyll-a-metal sandwich cells. J. Chem. Phys. 62, 2139 (1975).

  99. M. Hiramoto, Y. Kishigami, and M. Yokoyama: Doping effect on the two-layer organic solar cell. Chem. Lett. 19, 119 (1990).

    Article  Google Scholar 

  100. P.A. Lane, J. Rostalski, C. Giebeler, S.J. Martin, D.D.C. Bradley, and D. Meissner: Electroabsorption studies of phthalocyanine/ perylene solar cells. Sol. Energy Mater. Sol. Cells 63, 3 (2000).

    Article  CAS  Google Scholar 

  101. J. Rostalski and D. Meissner: Photocurrent spectroscopy for the investigation of charge carrier generation and transport mechanisms in organic p/n-junction solar cells. Sol. Energy Mater. Sol. Cells 63, 37 (2000).

  102. M. Pfeiffer, A. Beyer, B. Plönnigs, A. Nollau, T. Fritz, K. Leo, D. Schlettwein, S. Hiller, and D. Wöhrle: Controlled p-doping of pigment layers by cosublimation: Basic mechanisms and implication for their use in organic photovoltaic cells. Sol. Energy Mater. Sol. Cells 63, 83 (2000).

    Article  CAS  Google Scholar 

  103. D. Gebeyehu, B. Maennig, J. Drechsel, K. Leo, and M. Pfeiffer: Bulk-heterojunction photovoltaic devices based on donor-acceptor organic small molecule blends. Sol. Energy Mater. Sol. Cells 79, 81 (2003).

    Article  CAS  Google Scholar 

  104. J. Drechsel, B. Männig, F. Kozlowski, D. Gebeyehu, A. Werner, M. Koch, K. Leo, and M. Pfeiffer: High efficiency organic solar cells based on single or multiple PIN structures. Thin Solid Films 451–452, 515 (2004).

  105. M.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund: Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, CA, 1996).

  106. N.S. Sariciftci and A.J. Heeger: in Handbook of Organic Conductive Molecules and Polymers; Vol. 1, edited by H.S. Nalwa (John Wiley & Sons Ltd., Chichester, U.K., 1997), p. 413.

  107. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, and A.B. Holmes: Light-emitting diodes based on conjugated polymers. Nature 347, 539 (1990).

    Article  CAS  Google Scholar 

  108. D. Braun and A.J. Heeger: Visible light emission from semiconducting polymer diodes. Appl. Phys. Lett. 58, 1982 (1991).

  109. Organic Light-Emitting Devices: A Survey; edited by J. Shinar (Springer, New York, 2004).

  110. D. Adam, P. Schuhmacher, J. Simmerer, L. Häussling, K. Siemensmeyer, K.H. Etzbachi, H. Ringsdorf, and D. Haarer: Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature 371, 141 (1994).

    Article  CAS  Google Scholar 

  111. M. Funahashi and J.-I. Hanna: Fast hole transport in a new calamitic liquid crystal of 2-(4’-heptyloxyphenyl)-6-dodecylthiobenzothiazole. Phys. Rev. Lett. 78, 2184 (1997).

  112. H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, P. Herwig, and D.M. de Leeuw: Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685 (1999).

    Article  CAS  Google Scholar 

  113. H. Sirringhaus, R.J. Wilson, R.H. Friend, M. Inbasekaran, W. Wu, E.P. Woo, M. Grell, and D.D.C. Bradley: Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase. Appl. Phys. Lett. 77, 406 (2000).

    Article  CAS  Google Scholar 

  114. K.E. Aasmundtveit, E.J. Samuelsen, M. Guldstein, C. Steinsland, O. Flornes, C. Fagermo, T.M. Seeberg, L.A.A. Pettersson, O. Inganäs, R. Feidenhans, and S. Ferrer: Structural anisotropy of poly(alkylthiophene) films. Macromolecules 33, 3120 (2000).

    Article  CAS  Google Scholar 

  115. U. Zhokhavets, G. Gobsch, H. Hoppe, and N.S. Sariciftci: Anisotropic optical properties of thin poly(3-octylthiophene)-films as a function of preparation conditions. Synth. Met. 143, 113 (2004).

    Article  CAS  Google Scholar 

  116. W. Geens, S.E. Shaheen, C.J. Brabec, J. Poortmans, and N.S. Sariciftci: Field-effect mobility measurements of conjugated polymer/fullerene photovoltaic blends, presented at the 14th International Winterschool/Euroconference, Kirchberg, Austria, 2000 (AIP).

  117. T. Aernouts, P. Vanlaeke, W. Geens, J. Poortmans, P. Heremans, S. Borghs, and R. Mertens: The influence of the donor/acceptor ratio on the performance of organic bulk heterojunction solar cells, presented at the E-MRS Spring Meeting, Strasbourg, France, 2003.

  118. S.A. Choulis, J. Nelson, Y. Kim, D. Poplavskyy, T. Kreouzis, J.R. Durrant, and D.D.C. Bradley: Investigation of transport properties in polymer/fullerene blends using time-of-flight photocurrent measurements. Appl. Phys. Lett. 83, 3812 (2003).

    Article  CAS  Google Scholar 

  119. R. Pacios, J. Nelson, D.D.C. Bradley, and C.J. Brabec: Composition dependence of electron and hole transport in polyfluo-rene:[6,6]-phenyl C61-butyric acid methyl ester blend films. Appl. Phys. Lett. 83, 4764 (2003).

    Article  CAS  Google Scholar 

  120. S.C. Veenstra, G.G. Malliaras, H.J. Brouwer, F.J. Esselink, V.V. Krasnikov, P.F. van Hutten, J. Wildeman, H.T. Jonkman, G.A. Sawatzky, and G. Hadziioannou: Sexithiophene-C60 blends as model systems for photovoltaic devices. Synth. Met. 84, 971 (1997).

    Article  CAS  Google Scholar 

  121. T. Tsuzuki, Y. Shirota, J. Rostalski, and D. Meissner: The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment. Sol. Energy Mater. Sol. Cells 61, 1 (2000).

    Article  CAS  Google Scholar 

  122. S.E. Shaheen, R. Radspinner, N. Peyghambarian, and G.E. Jabbour: Fabrication of bulk heterojunction plastic solar cells by screen printing. Appl. Phys. Lett. 79, 2996 (2001).

    Article  CAS  Google Scholar 

  123. B.A. Gregg: Excitonic Solar Cells. J. Phys. Chem. B 107, 4688 (2003).

  124. M. Pope and C.E. Swenberg: Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford University Press, New York, 1999).

  125. M. Murgia, F. Biscarini, M. Cavallini, C. Taliani, and G. Ruani: Intedigitated p-n junction: A route to improve the efficiency in organic photovoltaic cells. Synth. Met. 121, 1533 (2001).

    Article  CAS  Google Scholar 

  126. G. Ruani, C. Fontanini, M. Murgia, and C. Taliani: Weak intrinsic charge-transfer complexes: A new route for developing wide spectrum organic photovoltaic cells. J. Chem. Phys. 116, 1713 (2002).

    Article  CAS  Google Scholar 

  127. T. Toccoli, A. Boschetti, C. Corradi, L. Guerini, M. Mazzola, and S. Iannotta: Co-deposition of phthalocyanines and fullerene by SuMBE; Characterization and prototype devices. Synth. Met. 138, 3 (2003).

    Article  CAS  Google Scholar 

  128. V.I. Arkhipov, P. Heremans, and H. Bässler: Why is exciton dissociation so efficient at the interface between a conjugated polymer and an electron acceptor? Appl. Phys. Lett. 82, 4605 (2003).

    Article  CAS  Google Scholar 

  129. G. Zerza, C.J. Brabec, G. Cerullo, S.D. Silvestri, and N.S. Sariciftci: Ultrafast charge transfer in conjugated polymer-fullerene composites. Synth. Met. 119, 637 (2001).

    Article  CAS  Google Scholar 

  130. A.F. Nogueira, I. Montari, J. Nelson, J.R. Durrant, C. Winder, N.S. Sariciftci, and C. Brabec: Charge recombination in conjugated polymer/fullerene blended films studied by transient absorption spectroscopy. J. Phys. Chem. B 107, 1567 (2003).

    Article  CAS  Google Scholar 

  131. A.J. Breeze, A. Salomon, D.S. Ginley, B.A. Gregg, H. Tillmann, and H-H. Hörhold: Polymer-perylene diimide heterojunction solar cells. Appl. Phys. Lett. 81, 3085 (2002).

    Article  CAS  Google Scholar 

  132. S.A. Jenekhe and S. Yi: Efficient photovoltaic cells from semiconducting polymer heterojunctions. Appl. Phys. Lett. 77, 2635 (2000).

  133. T. Yohannes, F. Zhang, M. Svensson, J.C. Hummelen, M.R. Andersson, and O. Inganäs: Polyfluorene copolymer based bulk heterojunction solar cells. Thin Solid Films 449, 152 (2004).

    Article  CAS  Google Scholar 

  134. E.A. Katz, D. Faiman, S.M. Tuladhar, J.M. Kroon, M.M. Wienk, T. Fromherz, F. Padinger, C.J. Brabec, and N.S. Sariciftci:Temperature dependence for the photovoltaic device parameters of polymer-fullerene solar cells under operating conditions. J. Appl. Phys. 90, 5343 (2001).

    Article  CAS  Google Scholar 

  135. V. Dyakonov: The polymer-fullerene interpenetrating network: One route to a solar cell approach. Physica E 14, 53 (2002).

  136. J.J. Dittmer, R. Lazzaroni, P. Leclere, P. Moretti, M. Granström, K. Petritsch, E.A. Marseglia, R.H. Friend, J.L. Bredas, H. Rost, and A.B. Holmes: Crystal network formation in organic solar cells. Sol. Energy Mater. Sol. Cells 61, 53 (2000).

    Article  CAS  Google Scholar 

  137. J.J. Dittmer, E.A. Marseglia, and R.H. Friend: Electron trapping in dye/polymer blend photovoltaic cells. Adv. Mater. 12, 1270 (2000).

    Article  CAS  Google Scholar 

  138. K. Petritsch, J.J. Dittmer, E.A. Marseglia, R.H. Friend, A. Lux, G.G. Rozenberg, S.C. Moratti, and A.B. Holmes: Dye-based donor/acceptor solar cells. Sol. Energy Mater. Sol. Cells 61, 63 (2000).

    Article  CAS  Google Scholar 

  139. L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E. Moons, R.H. Friend, and J.D. MacKenzie: Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293, 1119 (2001).

    Article  CAS  Google Scholar 

  140. L. Chen, D. Godovsky, O. Inganäs, J.C. Hummelen, R.A.J. Janssens, M. Svensson, and M.R. Andersson: Polymer photovoltaic devices from stratified multilayers of donor-acceptor blends. Adv. Mater. 12, 1367 (2000).

    Article  CAS  Google Scholar 

  141. C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, M.T. Rispens, L. Sanchez, J.C. Hummelen, and T. Fromherz: The influence of materials work function on the open circuit voltage of plastic solar cells. Thin Solid Films 403–404, 368 (2002).

  142. M. Drees, K. Premaratne, W. Graupner, J.R. Heflin, R.M. Davis, D. Marciu, and M. Miller: Creation of a gradient polymer-fullerene interface in photovoltaic devices by thermally controlled interdiffusion. Appl. Phys. Lett. 81, 1 (2002).

    Article  CAS  Google Scholar 

  143. G.G. Malliaras, J.R. Salem, P.J. Brock, and J.C. Scott: Photovoltaic measurement of the built-in potential in organic light emitting diodes and photodiodes. J. Appl. Phys. 84, 1583 (1998).

    Article  CAS  Google Scholar 

  144. C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, L. Sanchez, and J.C. Hummelen: Origin of the open circuit voltage of plastic solar cells. Adv. Funct. Mater. 11, 374 (2001).

    Article  CAS  Google Scholar 

  145. V.D. Mihailetchi, P.W.M. Blom, J.C. Hummelen, and M.T. Rispens: Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells. J. Appl. Phys. 94, 6849 (2003).

    Article  CAS  Google Scholar 

  146. I.H. Campbell, S. Rubin, T.A. Zawodzinski, J.D. Kress, R.L. Martin, D.L. Smith, N.N. Barashkov, and J.P. Ferraris: Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Phys. Rev. B 54, 14321 (1996).

    Article  Google Scholar 

  147. C.M. Heller, I.H. Campbell, D.L. Smith, N.N. Barashkov, and J.P. Ferraris: Chemical potential pinning due to equilibrium electron transfer at metal/C 60-doped polymer interfaces. J. Appl. Phys. 81, 3227 (1996).

    Article  Google Scholar 

  148. Y. Hirose, A. Kahn, V. Aristov, P. Soukiassian, V. Bulovic, and S.R. Forrest: Chemistry and electronic properties of metal-organic semiconductor interfaces: Al, Ti, In, Sn, Ag, and Au on PTCDA. Phys. Rev. B 54, 13748 (1996).

    Article  CAS  Google Scholar 

  149. H. Ishii, K. Sugiyama, E. Ito, and K. Seki: Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11, 605 (1999).

    Article  CAS  Google Scholar 

  150. L. Yan and Y. Gao: Interfaces in organic semiconductor devices. Thin Solid Films 417, 101 (2002).

  151. N. Koch, A. Kahn, J. Ghijsen, J-J. Pireaux, J. Schwartz, R.L. Johnson, and A. Elschner: Conjugated organic molecules on metal versus polymer electrodes: Demonstration of a key energy level alignment mechanism. Appl. Phys. Lett. 82, 70 (2003).

    Article  CAS  Google Scholar 

  152. D. Cahen and A. Kahn: Electron energetics at surfaces and interfaces: Concepts and experiments. Adv. Mater. 15, 271 (2003).

  153. S.C. Veenstra and H.T. Jonkman: Energy-level alignment at metal-organic and organic-organic interfaces. J. Polym. Sci Polym. Phys. 41, 2549 (2003).

  154. S.C. Veenstra, A. Heeres, G. Hadziioannou, G.A. Sawatzky, and H.T. Jonkman: On interface dipole layers between C60 and Ag or Au. Appl. Phys. A 75, 661 (2002).

    Article  CAS  Google Scholar 

  155. C. Melzer, V.V. Krasnikov, and G. Hadziioannou: Organic donor/acceptor photovoltaics: The role of C60/metal interfaces. Appl. Phys. Lett. 82, 3101 (2003).

    Article  CAS  Google Scholar 

  156. C.C. Wu, C.I. Wu, J.C. Sturm, and A. Kahn: Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light-emitting devices. Appl. Phys. Lett. 70, 1348 (1997).

    Article  CAS  Google Scholar 

  157. K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki: Dependence of indium–tin–oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies. J. Appl. Phys. 87, 295 (2000).

    Article  CAS  Google Scholar 

  158. J.C. Scott, S.A. Carter, S. Karg, and M. Angelopoulos: Polymeric anodes for organic light-emitting diodes. Synth. Met. 85, 1197 (1997).

    Article  CAS  Google Scholar 

  159. Y. Cao, G. Yu, C. Zhang, R. Menon, and A.J. Heeger: Polymer light-emitting diodes with polyethylene dioxythiophene–polystyrene sulfonate as the transparent anode. Synth. Met. 87, 171 (1997).

    Article  CAS  Google Scholar 

  160. T.M. Brown, J.S. Kim, R.H. Friend, F. Cacialli, R. Daik, and W.J. Feast: Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole-injection layer. Appl. Phys. Lett. 75, 1679 (1999).

    Article  CAS  Google Scholar 

  161. C. Ganzorig and M. Fujihira: Chemical modification of indium-tin-oxide electrodes by surface molecular design in Organic Optoelectronic Materials, Processing and Devices, edited by S.C. Moss. (Mater. Res. Soc. Symp. Proc. 708, Warrendale, PA, 2002), p. 83.

  162. L.S. Hung, C.W. Tang, and M.G. Mason: Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Appl. Phys. Lett. 70, 152 (1997).

    Article  CAS  Google Scholar 

  163. G.E. Jabbour, Y. Kawabe, S.E. Shaheen, J.F. Wang, M.M. Morrell, B. Kippelen, and N. Peyghambarian: Highly efficient and bright organic electroluminescent devices with an aluminum cathode. Appl. Phys. Lett. 71, 1762 (1997).

    Article  CAS  Google Scholar 

  164. C.J. Brabec, S.E. Shaheen, C. Winder, N.S. Sariciftci, and P. Denk: Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl. Phys. Lett. 80, 1288 (2002).

    Article  CAS  Google Scholar 

  165. F.L. Zhang, M. Johansson, M.R. Anderson, J.C. Hummelen, and O. Inganäs: Polymer solar cells based on MEH-PPV and PCBM. Synth. Met. 137, 1401 (2003).

    Article  CAS  Google Scholar 

  166. J.K.J. van Duren, J. Loos, F. Morrissey, C.M. Leewis, K.P.H. Kivits, L.J. van IJzendoorn, M.T. Rispens, J.C. Hummelen, and R.A.J. Janssen: In-situ compositional and structural analysis of plastic solar cells. Adv. Funct. Mater. 12, 665 (2002).

    Article  Google Scholar 

  167. C.W.T. Bulle-Lieuwma, W.J.H. van Gennip, J.K.J. van Duren, P. Jonkheijm, R.A.J. Janssen, and J.W. Niemantsverdriet: Characterization of polymer solar cells by TOF-SIMS depth profiling. Appl. Surf. Sci. 203, 547 (2003).

    Article  Google Scholar 

  168. H. Kim, S-H. Jin, H. Suh, and K. Lee: Origin of the open circuit voltage in conjugated polymer-fullerene photovoltaic cells. In Organic Photovoltaics IV, edited by Z.H. Kafafi, and P.A. Lane, Proceedings of the SPIE, Vol. 5215, (SPIE, Belling-ham, WA, 2004), p. 111,

  169. J. Gao, F. Hide, and H. Wang: Efficient photodetectors and photovoltaic cells from composites of fullerenes and conjugated polymers: Photoinduced electron transfer. Synth. Met. 84, 979 (1997).

    Article  CAS  Google Scholar 

  170. J. Liu, Y. Shi, and Y. Yang: Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices. Adv. Funct. Mater. 11, 420 (2001).

    Article  CAS  Google Scholar 

  171. M.C. Scharber, N.A. Schulz, N.S. Sariciftci, and C.J. Brabec: Optical- and photocurrent-detected magnetic resonance studies on conjugated polymer/fullerene composites. Phys. Rev. B 67, 085202 (2003).

    Article  CAS  Google Scholar 

  172. H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, and N.S. Sariciftci: Nanoscale morphology of conjugated polymer/fullerene based bulk-heterojunction solar cells. Adv. Funct. Mater. (2004).

  173. H. Frohne, S.E. Shaheen, C.J. Brabec, D.C. Müller, N.S. Sariciftci, and K. Meerholz: Influence of the anodic work function on the performance of organic solar cells. Chem Phys Chem. 9, 795 (2002).

    Article  Google Scholar 

  174. C.M. Ramsdale, J.A. Barker, A.C. Arias, J.D. MacKenzie, R.H. Friend, and N.C. Greenham: The origin of the open circuit voltage in polyfluorene-based photovoltaic devices. J. Appl. Phys. 92, 4266 (2002).

    Article  CAS  Google Scholar 

  175. J.A. Barker, C.M. Ramsdale, and N.C. Greenham: Modeling the current-voltage characteristics of bilayer polymer photovoltaic devices. Phys. Rev. B 67, 075205 (2003).

    Article  CAS  Google Scholar 

  176. I. Riedel, J. Parisi, V. Dyakonov, L. Lutsen, D. Vanderzande, and J.C. Hummelen: Effect of temperature and illumination on the electrical characteristics of polymer-fullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 14, 38 (2004).

    Article  CAS  Google Scholar 

  177. P. Schilinsky, C. Waldauf, J. Hauch, and C.J. Brabec: Simulation of light intensity dependent current characteristics of polymer solar cells. J. Appl. Phys. 95, 2816 (2004).

    Article  CAS  Google Scholar 

  178. H. Hoppe, N. Arnold, D. Meissner, and N.S. Sariciftci: Modelling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells. Sol. Energy Mater. Sol. Cells 80, 105 (2003).

    Article  CAS  Google Scholar 

  179. J. Drechsel, B. Maennig, D. Gebeyehu, M. Pfeiffer, K. Leo, and H. Hoppe: MIP-type organic solar cells incorporating phthalo-cyanine/fullerene mixed layers and doped wide-gap transport layers. Org. Electron. 5, 175 (2004).

    Article  CAS  Google Scholar 

  180. H. Hoppe, N. Arnold, D. Meissner, and N.S. Sariciftci: Modeling of optical absorption in conjugated polymer/fullerene bulkheterojunction plastic solar cells. Thin Solid Films 451, 589 (2004).

    Article  CAS  Google Scholar 

  181. I. Riedel and V. Dyakonov: Influence of electronic transport properties of polymer-fullerene blends on the performance of bulk heterojunction photovoltaic devices. Phys. Status Solidi A 201, 1332 (2004).

  182. S.E. Shaheen, G.E. Jabbour, M.M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M-F. Nabor, R. Schlaf, E.A. Mash, and N.R. Armstrong: Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode. J. Appl. Phys. 84, 2324 (1998).

    Article  CAS  Google Scholar 

  183. T.M. Brown, R.H. Friend, I.S. Millard, D.J. Lacey, J.H. Burroughes, and F. Cacialli: LiF/Al cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light-emitting diodes. Appl. Phys. Lett. 77, 3096 (2000).

    Article  CAS  Google Scholar 

  184. T. Kugler, W.R. Salaneck, H. Rost, and A.B. Holmes: Polymer band alignment at the interface with indium tin oxide: Consequences for light emitting devices. Chem. Phys. Lett. 310, 391 (1999).

    Article  CAS  Google Scholar 

  185. G. Greczynski, T. Kugler, and W.R. Salaneck: Energy level alignment in organic-based three-layer structures studied by photoelectron spectroscopy. J. Appl. Phys. 88, 7187 (2000).

    Article  CAS  Google Scholar 

  186. J.Y. Kim, J.H. Jung, D.E. Lee, and J. Joo: Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth. Met. 126, 311 (2002).

    Article  CAS  Google Scholar 

  187. S.K.M. Jönssona, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A.W.D. van der Gonc, W.R. Salaneck, and M. Fahlman: The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–poly-styrenesulfonic acid (PEDOT–PSS) films. Synth. Met. 139, 1 (2003).

    Article  CAS  Google Scholar 

  188. K. Kuhnke, R. Becker, M. Epple, and K. Kern: C60 exciton quenching near metal surfaces. Phys. Rev. Lett. 79, 3246 (1997).

    Article  CAS  Google Scholar 

  189. P. Würfel: Thermodynamic limitations to solar energy conversion. Physica E 14, 18 (2002).

  190. A. Yakimov and S.R. Forrest: High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters. Appl. Phys. Lett. 80, 1667 (2002).

  191. L.S. Roman, O. Inganas, T. Granlund, T. Nyberg, M. Svensson, M.R. Andersson, and J.C. Hummelen: Trapping light in polymer photodiodes with soft embossed gratings. Adv. Mater. 12, 189 (2000).

    Article  CAS  Google Scholar 

  192. M. Niggemann, B. Bläsi, A. Gombert, A. Hinsch, H. Hoppe, P. Lalanne, D. Meissner, and V. Wittwer: Trapping light in organic plastic solar cells with integrated diffraction gratings, presented at the 17th European Photovoltaic Solar Energy Conference, Munich, Germany, 2001.

  193. A. Dhanabalan, J.K.J. van Duren, P.A. van Hal, J.L.J. van Dongen, and R.A.J. Janssen: Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells. Adv. Funct. Mater. 11, 255 (2001).

    Article  CAS  Google Scholar 

  194. J.K.J. van Duren, A. Dhanabalan, P.A. van Hal, and R.A.J. Janssen: Low-bandgap polymer photovoltaic cells. Synth. Met. 121, 1587 (2001).

    Article  Google Scholar 

  195. C.J. Brabec, C. Winder, N.S. Sariciftci, J.C. Hummelen, A. Dhanabalan, P.A. van Hal, and R.A.J. Janssen: A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes. Adv. Funct. Mater. 12, 709 (2002).

    Article  CAS  Google Scholar 

  196. K Colladet, M. Nicolas, L. Goris, L. Lutsen, and D. Vanderzande: Low-band gap polymers for photovoltaic applications. Thin Solid Films 451-452, 7 (2004).

  197. N. Camaioni, M. Catellani, S. Luzzati, and A. Migliori: Morphological characterization of poly(3-octylthiophene):plasticiz-er:C60 blends. Thin Solid Films 403–404, 489 (2002).

  198. M.T. Rispens, A. Meetsma, R. Rittberger, C.J. Brabec, N.S. Sariciftci, and J.C. Hummelen: Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV:PCBM ‘plastic’ solar cells. Chem. Commun. 17, 2116 (2003).

    Article  Google Scholar 

  199. J.J.M. Halls, A.C. Arias, J.D. MacKenzie, W. Wu, M. Inbasekaran, E.P. Woo, and R.H. Friend: Photodiodes based on polyfluorene composites: Influence of morphology. Adv. Mater. 12, 498 (2000).

    Article  CAS  Google Scholar 

  200. T. Martens, Z. Beelen, J. D’Haen, T. Munters, L. Goris, J. Manca, M. D’Olieslaeger, D. Vanderzande, L.D. Schepper, and R. Andriessen: Morphology of MDMO-PPV:PCBM bulk heterojunction organic solar cells studied by AFM, KFM and TEM. In Organic Photovoltaics III, edited by Z.H. Kafafi and D. Fichou, Proceedings of SPIE Vol. 4801 (SPIE, Bellingham, WA, 2003), p. 40.

  201. A.C. Arias, N. Corcoran, M. Banach, R.H. Friend, J.D. MacKenzie, and W.T.S. Huck: Vertically segregated polymer-blend photovoltaic thin-film structures through surface-mediated solution processing. Appl. Phys. Lett. 80, 1695 (2002).

    Article  CAS  Google Scholar 

  202. N. Camaioni, G. Ridolfi, G. Casalbore-Miceli, G. Possamai, and M. Maggini: The effect of a mild thermal treatment on the performance of poly(3-alkylthiophene)/fullerene solar cells. Adv. Mater. 14, 1735 (2002).

    Article  CAS  Google Scholar 

  203. M. Hiramoto, K. Suemori, and M. Yokoyama: Photovoltaic properties of ultramicrostructure controlled organic co-deposited films. Jpn. J. Appl. Phys. 41, 2763 (2002).

    Article  CAS  Google Scholar 

  204. T. Martens, J. D’Haen, T. Munters, Z. Beelen, L. Goris, J. Manca, M. D’Olieslaeger, D. Vanderzande, L.D. Schepper, and R. Andriessen: Disclosure of the nanostructure of MDMO-PPV:PCBM bulk heterojunction organic solar cells by a combination of SPM and TEM. Synth. Met. 138, 243 (2003).

    Article  CAS  Google Scholar 

  205. H.J. Snaith, A.C. Arias, A.C. Morteani, C. Silva, and R.H. Friend: Charge generation kinetics and transport mechanisms in blended polyfluorene photovoltaic devices. Nano Lett. 2, 1353 (2003).

    Article  CAS  Google Scholar 

  206. J-F. Eckert, J-F. Nicoud, J-F. Nierengarten, S-G. Liu, L. Echegoyen, F. Barigelletti, N. Armaroli, L. Ouali, V. Krasnikov, and G. Hadziioannou: Fullerene-oligophenylenevinylene hybrids: Synthesis, electronic properties, and incorporation in photovoltaic devices. J. Am. Chem. Soc. 122, 7467 (2000).

    Article  CAS  Google Scholar 

  207. A. Dhanabalan, J. Knol, J.C. Hummelen, and R.A.J. Janssen: Design and synthesis of new processible donor-acceptor dyad and triads. Synth. Met. 119, 519 (2001).

    Article  CAS  Google Scholar 

  208. T. Otsubo, Y. Aso, and K. Takimiya: Functional oligothiophenes as advanced molecular electronic materials. J. Mater. Chem. 12, 2565 (2002).

    Article  CAS  Google Scholar 

  209. G. Possamai, N. Camaioni, G. Ridolfi, L. Franco, M. Ruzzi, E. Menna, G. Casalbore-Miceli, A.M. Fichera, G. Scorrano, C. Corvaja, and M. Maggini: A fullerene-azothiophene dyad for photovoltaics. Synth. Met. 139, 585 (2003).

    Article  CAS  Google Scholar 

  210. M.A. Loi, P. Denk, H. Hoppe, H. Neugebauer, C. Winder, D. Meissner, C. Brabec, N.S. Sariciftci, A. Gouloumis, P. Vazquez, and T. Torres: Long-lived photoinduced charge separation for solar cell applications in phthalocyanine-fulleropyrrolidine dyad thin films. J. Mater. Chem. 13, 700 (2003).

    Article  CAS  Google Scholar 

  211. F. Zhang, M. Svensson, M.R. Andersson, M. Maggini, S. Bucella, E. Menna, and O. Inganäs: Soluble polythiophenes with pendant fullerene groups as double cable materials for photodiodes. Adv. Mater. 13, 1871 (2001).

    Article  CAS  Google Scholar 

  212. A. Cravino, G. Zerza, M. Maggini, S. Bucella, M. Svensson, M.R. Andersson, H. Neugebauer, C.J. Brabec, and N.S. Sariciftci: A soluble donor-acceptor double-cable polymer: Polythiophene with pendant fullerenes. Monatsh. Chem. 134, 519 (2003).

    Article  CAS  Google Scholar 

  213. C. Park, J. Yoon, and E.L. Thomas: Enabling nanotechnology with self assembled block copolymer patterns. Polymer 44, 6725 (2003).

    Article  CAS  Google Scholar 

  214. U. Stalmach, B. de Boer, C. Videlot, P.F. van Hutten, and G. Hadziioannou: Semiconducting diblock copolymers synthesized by means of controlled radical polymerization techniques. J. Am. Chem. Soc. 122, 5464 (2000).

    Article  CAS  Google Scholar 

  215. G. Hadziioannou: Semiconducting block copolymers for self-assembled photovoltaic devices. MRS Bull. 27, 456 (2002).

  216. S.S. Sun, Z. Fan, Y. Wang, C. Taft, J. Haliburton, and S. Maaref: Synthesis and characterization of a novel -D-B-A-B- block co-polymer system for potential light harvesting applications. In Organic Photovoltaics III, edited by Z.H. Kafafi and D. Fichou, Proceedings of SPIE Vol. 4801 (SPIE, Bellingham, WA, 2003), p. 114.

  217. T. Kietzke, D. Neher, K. Landfester, R. Montenegro, R. Güntner, and U. Scherf: Novel approaches to polymer blends based on polymer nanoparticles. Nature Mater. 2, 408 (2003).

    Article  CAS  Google Scholar 

  218. K.M. Coakley, Y. Liu, M.D. McGehee, K. Frindell, and G.D. Stucky: Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications. Adv. Funct. Mater. 13, 301 (2003).

    Article  CAS  Google Scholar 

  219. K.M. Coakley and M.D. McGehee: Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania. Appl. Phys. Lett. 83, 1 (2003).

  220. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A.P. Alivisatos: Shape control of CdSe nanocrystals. Nature 404, 59 (2000).

    Article  CAS  Google Scholar 

  221. D.J. Milliron, C. Pitois, C. Edder, J.M.J. Frechet, and A.P. Alivisatos: Designed for charge transfer: complexes of CdSe nanocrystals and oligothiophenes, in Organic and Polymeric Materials and DevicesOptical, Electrical, and Optoelectric Properties, edited by G.E. Jabbour, S.A. Carter, J. Kido, S-T. Lee, and N.S. Sariciftci. (Mater. Res. Soc. Symp. Proc. 725, Warrendale, PA, 2002), p. 177.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Hoppe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoppe, H., Sariciftci, N.S. Organic solar cells: An overview. Journal of Materials Research 19, 1924–1945 (2004). https://doi.org/10.1557/JMR.2004.0252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0252

Navigation