Skip to main content
Log in

Fabrication and structural characterization of self-supporting electrolyte membranes for a micro solid-oxide fuel cell

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Micromachined fuel cells are among a class of microscale devices being explored for portable power generation. In this paper, we report processing and geometric design criteria for the fabrication of free-standing electrolyte membranes for microscale solid-oxide fuel cells. Submicron, dense, nanocrystalline yttria-stabilized zirconia (YSZ) and gadolinium-doped ceria (GDC) films were deposited onto silicon nitride membranes using electron-beam evaporation and sputter deposition. Selective silicon nitride removal leads to free-standing, square, electrolyte membranes with side dimensions as large as 1025 μm for YSZ and 525 μm for GDC, with high processing yields for YSZ. Residual stresses are tensile (+85 to +235 MPa) and compressive (–865 to -155 MPa) in as-deposited evaporated and sputtered films, respectively. Tensile evaporated films faul via brittle fracture during annealing at temperatures below 773 K; thermal limitations are dependent on the film thickness to membrane size aspect ratio. Sputtered films with compressive residual stresses show superior mechanical and thermal stability than evaporated films. Sputtered 1025-μm membranes survive annealing at 773 K, which leads to the generation of tensile stresses and brittle fracture at elevated temperatures (923 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Morse, A.F. Jankowski, R.T. Graff, and J.P. Hayes: Novel proton exchange membrane thin-film fuel cell for microscale energy conversion. J. Vac. Sci. Technol. A 18, 2003 (2000).

    Article  CAS  Google Scholar 

  2. A. Heinzel, C. Hebling, M. Muller, M. Zedda, and C. Muller: Fuel cells for low power applications, J. Power Sources 105, 250 (2002).

    Article  CAS  Google Scholar 

  3. H. Voss and J. Huff: Portable fuel cell power generator. J. Power Sources 65, 155 (1997).

    Article  CAS  Google Scholar 

  4. H. Chang, J.R. Kim, J.H. Cho, H.K. Kim, and K.H. Choi: Materials and processes for small fuel cells. Solid State Ionics 148, 601 (2002).

    Article  CAS  Google Scholar 

  5. X. Ren, P. Zelenay, S. Thomas, J. Davey, and S. Gottesfeld: Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. J. Power Sources 86, 111 (2000).

    Article  CAS  Google Scholar 

  6. S.D. Park, J.M. Vohs, and R.J. Gorte: Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265 (2000).

    Article  CAS  Google Scholar 

  7. A.F. Jankowski, R.T. Graff, J.P. Hayes, and J.D. Morse: Testing of solid-oxide fuel cells for micro to macro power generation, in Proceedings of the Sixth International Symposium on SOFC, edited by M. Dokiya and S.C. Singhal (Electrochem. Soc. Proc., Pennington, NJ, 1999), p. 932.

    Google Scholar 

  8. S. de Souza: S.J. Visco, and L.D. De Jonghe, Thin-film solid oxide fuel cell with high performance at low-temperature. Solid State Ionics 98, 57 (1997).

    Article  Google Scholar 

  9. L.R. Arana, S.B. Schaevitz, A.J. Franz, M.A. Schmidt, and K.F. Jensen: A microfabricated suspended-tube chemical reactor for thermally efficient fuel processing. J. Microelectromech. Syst. 12, 600 (2002).

    Article  Google Scholar 

  10. B.C.H. Steele and A. Heinzel: Materials for fuel-cell technologies. Nature 414, 345 (2001).

    Article  CAS  Google Scholar 

  11. V.T. Srikar, K.T. Turner, T.Y.A. Ie, and S.M. Spearing: Structural design considerations for micromachined solid-oxide fuel cells. J. Power Sources 125, 62 (2004).

    Article  CAS  Google Scholar 

  12. W.D. Nix: Mechanical properties of thin-films. Metall. Trans. 20A, 2217 (1989).

    Article  CAS  Google Scholar 

  13. T. Ami, Y. Ishida, N. Nagasawa, A. Machida, and M. Suzuki: Room-temperature epitaxial growth of CeO2(001) thin films on Si(001) substrates by electron beam evaporation. Appl. Phys. Lett. 78, 1361 (2001).

    Article  CAS  Google Scholar 

  14. D.D. Hass, P.A. Parrish, and H.N.G. Wadley: Electron beam directed vapor deposition of thermal-barrier coatings. J. Vac. Sci. Technol. A 16, 3396 (1998).

    Article  CAS  Google Scholar 

  15. M. Hartmanova, I. Thurzo, M. Jergel, J. Bartos, F. Kadlec, V. Zelenzny, D. Tunega, F. Kundracik, S. Chromik, and M. Brunel: Characterization of yttria-stabilized zirconia thin films deposited by electron beam evaporation on silicon substrates. J. Mater. Sci. 33, 969 (1998).

    Article  CAS  Google Scholar 

  16. J.E. Greene, C.E. Wickersham, J.L. Zilko, L.B. Welsh, and F.R. Szofran: Morphological and electrical properties of RF sputtered Y2O3-doped ZrO2 thin films. J. Vac. Sci. Technol. 13, 72 (1976).

    Article  CAS  Google Scholar 

  17. A. Nagata and H. Okayama: Characterization of solid oxide fuel cell device having a three-layer film structure grown by RF magnetron sputtering. Vac. 66, 523 (2002).

    Article  CAS  Google Scholar 

  18. E.S. Thiele, L.S. Wang, T.O. Mason, and S.A. Barnett: Deposition and properties of yttria-stabilized zirconia thin films using reactive direct-current magnetron sputtering. J. Vac. Sci. Technol. A 9, 3054 (1991).

    Article  CAS  Google Scholar 

  19. O. Unal, T.E. Mitchell, and A.H. Heuer: Microstructures of Y2O3- stabilized ZrO2 electron-beam physical vapor deposition coatings on Ni-base superalloys. J. Am. Ceram. Soc. 77, 984 (1994).

    Article  CAS  Google Scholar 

  20. H.L. Tuller: Solid state electrochemical systems—Opportunities for nanofabricated or nanostructured materials. J. Electroceramics 1, 211 (1997).

    Article  CAS  Google Scholar 

  21. J.Y. Ying and T. Sun: Research needs assessment on nanostructured catalysts. J. Electroceramics 1, 219 (1997).

    Article  CAS  Google Scholar 

  22. J. Lappalaunen, D. Kek, and H.L. Tuller: Investigation of Pt/Si/ CeO2/Pt MOS device structure by impedance spectroscopy, in Electrically Based Microstructural Characterization III, edited by R.A. Gerhardt, A.P. Washabaugh, M.A. Alim, and G.M. Choi (Mater. Res. Soc. Symp. Proc. 699, Warrendale, PA, 2002), p. 173, R5.1.1.

    Google Scholar 

  23. A. Tschope and R. Birringer: Graun size dependence of electrical conductivity in polycrystalline cerium oxide. J. Electroceramics 7, 169 (2001).

    Article  CAS  Google Scholar 

  24. S. Kim and J. Mauer: On the conductivity mechanism of nanocrystalline ceria. J. Electrochem. Soc. 149, J73 (2002).

    Article  Google Scholar 

  25. T. Suzuki, I. Kosacki, and H.U. Anderson: Microstructureelectrical conductivity relationships in nanocrystalline ceria thin films. Solid State Ionics 151, 111 (2002).

    Article  CAS  Google Scholar 

  26. I. Kosacki, T. Suzuki, V. Petrovsky, and H.U. Anderson: Electrical conductivity of nanocrystalline ceria and zirconia thin films. Solid State Ionics 136, 1225 (2000).

    Article  Google Scholar 

  27. P. Bruschi, A. Diligenti, A. Nannini, and M. Piotto: Technology of integrable free-standing yttria-stabilized zirconia membranes. Thin Solid Films 346, 251 (1999).

    Article  CAS  Google Scholar 

  28. S.D. Senturia: Microsystem Design (Kluwer, Norwell, MA, 2001).

    Google Scholar 

  29. J. Proost and F. Spaepen: Evolution of the growth stress, stiffness, and microstructure of alumina thin films during vapor deposition. J. Appl. Phys. 91, 204 (2002).

    Article  CAS  Google Scholar 

  30. D.W. Hoffmann and J.A. Thornton: Compressive stress transition in Al, V, Zr, Nb and W metal-films sputtered at low working pressures. Thin Solid Films 45, 387 (1977).

    Article  Google Scholar 

  31. R.W. Knoll and E.R. Bradley: Correlation between the stress and microstructure in bias-sputtered ZrO2-Y2O3 films. Thin Solid Films 117, 201 (1984).

    Article  CAS  Google Scholar 

  32. V.T. Srikar and S.M. Spearing: A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems. Exp. Mech. 43, 238 (2003).

    Article  Google Scholar 

  33. V. Ziebart, O. Paul, and H. Baltes: Strongly buckled square micromachined membranes. J. Microelectromech. Syst. 8, 423 (1999).

    Article  Google Scholar 

  34. S.R. Wang, M. Katsuki, T. Hashimoto, and M. Dokiya: Expansion behavior of Ce1-yGdyO2.0-0.5y-δ under various oxygen partial pressures evaluated by HTXRD. J. Electrochem. Soc. 150, A952 (2003).

    Article  Google Scholar 

  35. M. Mogensen, T. Lindegaard, U.R. Hansen, and G. Mogensen: Physical properties of mixed conductor solid oxide fuel-cell anodes of doped CeO2. J. Electrochem. Soc. 141, 2122 (1994).

    Article  CAS  Google Scholar 

  36. A. Atkinson and T.M.G.M. Ramos: Chemically-induced stresses in ceramic oxygen ion-conducting membranes. Solid State Ionics 129, 259 (2000).

    Article  CAS  Google Scholar 

  37. A.C. Ugural, Stresses in Plates and Shells, 2nd ed., (McGraw- Hill, New York, 1999).

    Google Scholar 

  38. J.L. Hertz and H.L. Tuller: Electrochemical characterization of thin films for a micro-solid oxide fuel cell. J. Electroceram. (2003, in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klavs F. Jensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baertsch, C.D., Jensen, K.F., Hertz, J.L. et al. Fabrication and structural characterization of self-supporting electrolyte membranes for a micro solid-oxide fuel cell. Journal of Materials Research 19, 2604–2615 (2004). https://doi.org/10.1557/JMR.2004.0350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0350

Navigation