Skip to main content
Log in

Influence ofresidual stress on elastic modulus and hardness of soda-lime glass measured by nanoindentation

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The influence of stress on the elastic modulus E and hardness H in soda-lime glass was studied in the Vickersresidual stress field by nanoindentation. The Oliver–Pharr method of analysis first gave higher values of E and H, but after correcting for the pileup contact areas around the nanoindents,results consistent with literature values were obtauned atregions in the stress field where the stresses were either low or close to zero. Determination of the pileup contact areas was made possible by the use of the atomic force microscope, which has facility for generating cross-section images of the indents. The elastic modulus was found to decrease with stress, which is explauned withreference to the influence of applied stresses on the Si–O–Si bond angle. The hardness on the other hand did not depend on the stresses except in theregion very close to the edge of the Vickers indent where the stresses are high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.M. Pharr: Measurement of mechanical properties by ultra-low load indentation. Mater. Sci Eng. A 253, 151 (1998).

    Article  Google Scholar 

  2. T.Y. Tsui, W.C. Oliver, and G.M. Pharr: Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminium alloy. J. Mater. Res. 11, 752 (1996).

    Article  CAS  Google Scholar 

  3. F.M. Ernsberger: in Glass Science and Technology, Vol 5: Elasticity and Strength in Glass, edited by D.R. Uhlmann and N.J. Kreidl (Academic Press, New York, 1980), pp. 9–11.

  4. F.P. Mallinder and B.A. Proctor: Elastic constants of fused silica as a function of large tensile straun. Phys. Chem. Glasses 5, 91 (1964).

    Google Scholar 

  5. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  6. A. Bolshakov, W.C. Oliver, and G.M. Pharr: Influences of stress on the measurement of properties using nanoindentation: Part II. Finite element simulations. J. Mater. Res. 11, 760 (1996).

    Article  CAS  Google Scholar 

  7. A. Bolshakov and G.M. Pharr: Influences of pileup on the measurement of mechanical properties by load and depth-sensing indentation techniques. J. Mater. Res. 13, 1049 (1998).

    Article  CAS  Google Scholar 

  8. G.M. Pharr and A. Bolshakov: Understanding nanoindnetation unloading curves. J. Mater. Res. 17, 2660 (2002).

    Article  CAS  Google Scholar 

  9. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  10. K. Zeng and C-H. Chiu: An analysis of load–penetration curves from instrumented indentation. Acta Mater. 49, 3539 (2001).

    Article  CAS  Google Scholar 

  11. M. Martin and M. Troyon: Fundamental relations used in nanoindentation: Critical examination based on experimental measurements. J. Mater. Res. 17, 2227 (2002).

    Article  CAS  Google Scholar 

  12. M.M. Chaudhri: A note on a common mistake in the analysis of nanoindentation data. J. Mater. Res. 16, 336 (2001).

    Article  CAS  Google Scholar 

  13. J. Thurn and R.F. Cook: Simplified area function for sharp indenter tips in depth-sensing indentation. J. Mater. Res. 17, 1143 (2002).

    Article  CAS  Google Scholar 

  14. Y-T. Cheng and C-M. Cheng: Relationships between hardness, elastic modulus, and the work of indentation. J. Appl. Phys. Lett. 73, 614 (1998).

    Article  CAS  Google Scholar 

  15. E.H. Yoffe: Elastic, stress fields caused by indenting brittle materials. Philos. Mag. A 46, 617 (1982).

    Article  CAS  Google Scholar 

  16. S.S. Chiang, D.B. Marshall, and A.G. Evans: The response of solids to elastic/plastic indentation. I. Stresses and residual stresses. J. Appl. Phys. 53, 298 (1982).

    Article  CAS  Google Scholar 

  17. K. Zeng and D. Rowcliffe: Experimental measurement of residual stress field around a sharp indentation in glass. J. Am. Ceram. Soc. 77, 524 (1994).

    Article  CAS  Google Scholar 

  18. K. Zeng and D.J. Rowcliffe: Vickers indentation in glass–I. Residual stress fields and iso-stress contour maps. Acta Metall. Mater. 43, 1935 (1995).

    Article  CAS  Google Scholar 

  19. A. Pajares, F. Guibertau, R.W. Steinbrech, and A. Dominguez-Rodriguez: Residual stress around Vickers indents. Acta Metall. Mater. 43, 3649 (1995).

    Article  CAS  Google Scholar 

  20. K. Kese and D.J. Rowcliffe: Nanoindentation method for measuring residual stress in brittle materials. J. Am. Ceram. Soc. 86, 811 (2003).

    Article  CAS  Google Scholar 

  21. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall: A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements. J. Am. Ceram. Soc. 64, 533 (1981).

    Article  CAS  Google Scholar 

  22. B.R. Lawn and V.R. Howes: Elastic recovery at hardness indentations. J. Mater. Sci. 16, 2745 (1981).

    Article  CAS  Google Scholar 

  23. M.M. Chaudhri and M. Winter: The load-bearing area of a hardness indentation. J. Phys. D: Appl. Phys. 21, 370 (1988).

    Article  CAS  Google Scholar 

  24. K.F. Jarausch, J.D. Kiely, J.E. Houston, and P.E. Russell: in Proceedings of the SEM Annual Conference on Theoretical, Experimental and Computational Mechanics (Society for Experimental Mechanics, Inc., 1999), p. 328.

    Google Scholar 

  25. T.R. Simes, S.G. Mellor, and D.A. Hills: A note on the influence of residual stress on measured hardness. J. Straun Analysis 19, 135 (1984).

    Article  Google Scholar 

  26. D. Tabor: The Hardness of Metals (Oxford University Press, London, U.K., 1951).

    Google Scholar 

  27. A.K. Varshneya: Fundamentals of Inorganic Glasses (Academic Press, San Diego, CA, 1994), pp. 171–176.

    Google Scholar 

  28. V.K. Leko: The structure of vitreous silica. Glass Phys. Chem. 19, 351 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kese, K.O., Li, Z.C. & Bergman, B. Influence ofresidual stress on elastic modulus and hardness of soda-lime glass measured by nanoindentation. Journal of Materials Research 19, 3109–3119 (2004). https://doi.org/10.1557/JMR.2004.0404

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0404

Navigation