Skip to main content
Log in

Nanoindentation testing for evaluating modulus and hardness of single-walled carbon nanotube–reinforced epoxy composites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Instrumented indentation testing was used to evaluate the changes in mechanical properties of single-walled carbon nanotube composite specimens with varying weight percentage (0, 0.1, 0.5, and 1.0 wt%) of nanotubes using a low-viscosity liquid epoxy resin. The nanotubes were prepared using laser ablation technique. Reference tensile tests were also performed on the same samples, and relevant comparisons with indentation results were made. The variations in modulus and hardness obtained using nanoindentation (considering time effects) showed quantifiable differences between the various composite specimens, but differed from tensile test data. The small changes in the observed stiffness and breaking strength of carbon nanotube composites was due to the formation of bundles, their curvy morphology, and microporosity in the specimens. Interesting fluctuations obtained from the interpreted values of modulus with depth of indentation is attributed to varying degrees of the local confining effect of nanotube bundles. Creep exponents for these nanocomposites were also evaluated and indicate considerable improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. K.T. Lau and D. Hui, Compos. B: Eng. 33, 263 (2002).

    Article  Google Scholar 

  3. E.T. Thostenson, Z. Ren, and T.W. Chou, Compos. Sci. Technol. 61, 1899 (2001).

    Article  CAS  Google Scholar 

  4. K.T. Lau, S.Q. Shi, and H.M. Cheng, Compos. Sci. Technol. 63, 1161 (2003).

    Article  CAS  Google Scholar 

  5. A. Allaoui, S. Bai, H.M. Cheng, and J.B. Bai, Compos. Sci. Technol. 62, 1993 (2002).

    Article  CAS  Google Scholar 

  6. R. Haggenmueller, H.H. Gommans, A.G. Rinzler, J.E. Fischer, and K.I. Winey, Chem. Phys. Lett. 330, 219 (2000).

    Article  CAS  Google Scholar 

  7. P.M. Ajayan, L.S. Schadler, C. Giannaris, and A. Rubio, Adv. Mater. 12, 750 (2000).

    Article  CAS  Google Scholar 

  8. L.S. Schadler, S.C. Giannaris, and P.M. Ajayan, Appl. Phys. Lett. 73, 3842 (1998).

    Article  CAS  Google Scholar 

  9. D. Penumadu, A. Dutta, G.M. Pharr, and B.S. Files, J. Mater. Res. 18, 308 (2003).

    Article  Google Scholar 

  10. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  11. H.M. Pollock, D. Maugis, and M. Barquins, Microindentation Tech. In Mat. Sci. & Eng. edited by P.J. Blau and R. Lawn ASTM 47 (Pittsburgh, PA, 1986).

  12. M.J. Mayo, R.W. Seigel, Y.X. Liao, and W.D. Nix, J. Mater. Res. 7, (1992).

  13. M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, and J.E. Fischer, Appl. Phys. Lett. 80, 2767 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, A.K., Penumadu, D. & Files, B. Nanoindentation testing for evaluating modulus and hardness of single-walled carbon nanotube–reinforced epoxy composites. Journal of Materials Research 19, 158–164 (2004). https://doi.org/10.1557/jmr.2004.19.1.158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2004.19.1.158

Navigation