Skip to main content
Log in

A survey of instrumented indentation studies on metallic glasses

  • Reviews
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The development of instrumented nanoindentation equipment has occurred concurrently with the discovery of many new families of bulk metallic glass during the past decade. While indentation testing has long been used to assess the mechanical properties of metallic glasses, depth-sensing capabilities offer a new approach to study the fundamental physics behind glass deformation. This article is a succinct review of the research to date on the indentation of metallic glasses. In addition to standard hardness measurements, the onset of plasticity in metallic glasses is reviewed as well as the role of shear banding in indentation, structural changes beneath the indenter, and rate-dependent effects measured by nanoindentation. The article concludes with perspectives about the future directions for nanocontact studies on metallic glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Klement, R.H. Willens, and P. Duwez, Nature 187, 869 (1960).

    Article  CAS  Google Scholar 

  2. L.A. Davis, Scr. Metall. 9, 431 (1975).

    Article  CAS  Google Scholar 

  3. P.E. Donovan, J. Mater. Sci. 24, 523 (1989).

    Article  CAS  Google Scholar 

  4. J.C.M. Li, Treatises in Materials Science, 20, 325 (1981).

    Article  CAS  Google Scholar 

  5. W.L. Johnson, JOM, 54, 40 (2002).

    Article  CAS  Google Scholar 

  6. A. Inoue, Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  7. D. Tabor, The Hardness of Metals (Oxford University Press, London, U.K., 1951).

  8. P.E. Donovan, Mater. Sci. Eng. 98, 487 (1988).

    Article  CAS  Google Scholar 

  9. H. Kimura and T. Masumoto, Acta Metall. 31, 231 (1983).

    Article  Google Scholar 

  10. T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, and K. Higashi, Scr. Mater. 46, 43 (2002).

    Article  CAS  Google Scholar 

  11. R. Hill, Plasticity (Clarendon Press, Oxford, U.K., 1950).

  12. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1985).

  13. F.J. Lockett, J. Mech. Phys. Solids 11, 345 (1963).

    Article  Google Scholar 

  14. A. Ishlinsky, Prikladnaia Matematika i Mekanika 8, 201 (1944).

    Google Scholar 

  15. C.A. Schuh, A.S. Argon, T.G. Nieh, and J. Wadsworth, Philos. Mag. A 83, 2585 (2003).

    Article  CAS  Google Scholar 

  16. M. Dao, N. Chollacoop, K.J. VanVliet, T.A. Venkatesh, and S. Suresh, Acta Mater. 49, 3899 (2001).

    Article  CAS  Google Scholar 

  17. A.E. Giannakopoulos and S. Suresh, Scr. Mater. 40, 1191 (1999).

    Article  CAS  Google Scholar 

  18. T.A. Venkatesh, K.J. VanVliet, A.E. Giannakopoulos, and S. Suresh, Scr. Mater. 42, 833 (2000).

    Article  CAS  Google Scholar 

  19. S. Kucharski and Z. Mroz, Mater. Sci. Eng. A 318, 65 (2001).

    Article  Google Scholar 

  20. K. Zeng and C-h. Chiu, Acta Mater. 49, 3539 (2001).

    Article  CAS  Google Scholar 

  21. J.L. Bucaille, S. Stauss, E. Felder, and J. Michler, Acta Mater. 51, 1663 (2003).

    Article  CAS  Google Scholar 

  22. L.A. Davis and S. Kavesh, J. Mater. Sci. 10, 453 (1975).

    Article  CAS  Google Scholar 

  23. J.J. Lewandowski and P. Lowhaphandu, Philos. Mag. A 82, 3427 (2002).

    Article  CAS  Google Scholar 

  24. P. Lowhaphandu, S.L. Montgomery, and J.J. Lewandowski, Scr. Mater. 41, 19 (1999).

    Article  CAS  Google Scholar 

  25. P.E. Donovan, Acta Mater. 37, 445 (1989).

    Article  CAS  Google Scholar 

  26. K.M. Flores and R.H. Dauskardt, Acta Mater. 49, 2527 (2001).

    Article  CAS  Google Scholar 

  27. C.A. Schuh and A.C. Lund, Nature Materials 2, 449 (2003).

    Article  CAS  Google Scholar 

  28. R. Vaidyanathan, M. Dao, G. Ravichandran, and S. Suresh, Acta Mater. 49, 3781 (2001).

    Article  CAS  Google Scholar 

  29. M. Pang, D.F. Bahr and K.G. Lynn, Appl. Phys. Lett. 82, 1200 (2003).

    Article  CAS  Google Scholar 

  30. W.W. Gerberich, J.C. Nelson, E.T. Lilleodden, P. Anderson, and J.T. Wyrobek, Acta Mater. 44, 3585 (1996).

    Article  CAS  Google Scholar 

  31. A. Gouldstone, H-J. Koh, K-Y. Zeng, A.E. Giannakopoulos, and S. Suresh, Acta Mater. 48, 2277 (2000).

    Article  CAS  Google Scholar 

  32. D.E. Kramer, K.B. Yoder and W.W. Gerberich, Philos. Mag. A 81, 2033 (2001).

    Article  CAS  Google Scholar 

  33. M. Pang and D.F. Bahr, J. Mater. Res. 16, 2634 (2001).

    Article  CAS  Google Scholar 

  34. I. Zarudi, L.C. Zhang, and M.V. Swain, Appl. Phys. Lett. 82, 1027 (2003).

    Article  CAS  Google Scholar 

  35. J.G. Wang, B.W. Choi, T.G. Nieh, and C.T. Liu, J. Mater. Res. 15, 798 (2000).

    Article  CAS  Google Scholar 

  36. Y.I. Golovin, V.I. Ivolgin, V.A. Khonik, K. Kitagawa, and A.I. Tyurin, Scr. Mater. 45, 947 (2001).

    Article  CAS  Google Scholar 

  37. C.A. Schuh, T.G. Nieh, and Y. Kawamura, J. Mater. Res. 17, 1651 (2002).

    Article  CAS  Google Scholar 

  38. C.A. Schuh and T.G. Nieh, Acta Mater. 51, 87 (2003).

    Article  CAS  Google Scholar 

  39. T.G. Nieh, C.A. Schuh, J. Wadsworth, and Y. Li, Intermetallics 10, 1177 (2002).

    Article  CAS  Google Scholar 

  40. A.L. Greer and I.T. Walker, Mater. Sci. Forum 386–388, 77 (2002).

    Article  Google Scholar 

  41. A.L. Greer, A. Castellero, S.V. Madge, I.T. Walker, and J.R. Wilde, Mater. Sci. Eng. A (2003, in press).

  42. W.J. Wright, R. Saha, and W.D. Nix, Mater. Trans. JIM 42, 642 (2001).

    Article  CAS  Google Scholar 

  43. C.J. Gilbert, V. Schroeder, and R.O. Ritchie, Metall. Mater. Trans. 30A, 1739 (1999).

    Article  CAS  Google Scholar 

  44. D.F. Bahr, D.E. Kramer, and W.W. Gerberich, Acta Mater. 46, 3605 (1998).

    Article  CAS  Google Scholar 

  45. S. Suresh, T.G. Nieh, and B.W. Choi, Scr. Mater. 41, 951 (1999).

    Article  CAS  Google Scholar 

  46. W.J. Wright, R.B. Schwarz, and W.D. Nix, Mater. Sci. Eng. A 319-321, 229 (2001).

    Article  Google Scholar 

  47. H. Kimura and T. Masumoto, Acta Metall. 28, 1663 (1980).

    Article  CAS  Google Scholar 

  48. H. Kimura and T. Masumoto, Acta Metall. 28, 1677 (1980).

    Article  CAS  Google Scholar 

  49. H. Kimura and T. Masumoto, Philos. Mag. A 44, 1005 (1981).

    Article  CAS  Google Scholar 

  50. H. Kimura and T. Masumoto, Philos. Mag. A 44, 1021 (1981).

    Article  CAS  Google Scholar 

  51. J-J. Kim, Y. Choi, S. Suresh, and A.S. Argon, Science 295, 654 (2002).

    CAS  Google Scholar 

  52. T. Benameur, K. Hajlaoui, A.R. Yavari, A. Inoue, and B. Rezgui, Mater. Trans. JIM 43, 2617 (2002).

    Article  CAS  Google Scholar 

  53. W.H. Jiang and M. Atzmon, J. Mater. Res. 18, 755 (2003).

    Article  CAS  Google Scholar 

  54. S. Jana, U. Ramamurty, K. Chattopadhyay, and Y. Kawamura, Mater. Sci. and Eng. A (2003, in press).

  55. S. Jana, Y. Kawamura, K. Chattopadhyay, and U. Ramamurty (unpublished).

  56. H. Chen, Y. He, G.J. Shiflet, and S.J. Poon, Nature 367, 541 (1994).

    Article  CAS  Google Scholar 

  57. W.H. Wang, R.J. Wang, W.T. Yang, B.C. Wei, P. Wen, D.Q. Zhao, and M.X. Pan, J. Mater. Res. 17, 1385 (2002).

    Article  CAS  Google Scholar 

  58. N. Mattern, U. Kuhn, H. Hermann, H. Ehrenberg, J. Neuefeind, and J. Eckert, Acta Mater. 50, 305 (2002).

    Article  CAS  Google Scholar 

  59. T. Ohkubo and Y. Hirotsu, Phys. Rev. B 67, 094201 (2003).

    Article  CAS  Google Scholar 

  60. S.R. Elliott, Nature 354, 445 (1991).

    Article  CAS  Google Scholar 

  61. W.H. Jiang, F.E. Pinkerton, and M. Atzmon, J. Appl. Phys. 93, 9287 (2003).

    Article  CAS  Google Scholar 

  62. N. Nagendra, U. Ramamurty, T.T. Goh, and Y. Li, Acta Mater. 48, 2603 (2000).

    Article  CAS  Google Scholar 

  63. G. He, J. Lu, Z. Bian, D. Chen, G. Chen, G. Tu, and G. Chen, Mater. Trans. JIM 42, 356 (2001).

    Article  CAS  Google Scholar 

  64. M.L. Vaillant, V. Keryvin, T. Rouxel, and Y. Kawamura, Scr. Mater. 47, 19 (2002).

    Article  CAS  Google Scholar 

  65. A. Inoue, H.S. Kimura, and T. Zhang, Mater. Sci. Eng. A 294- 296, 727 (2000).

    Article  Google Scholar 

  66. J. Li, F. Spaepen, and T.C. Hufnagel, Philos. Mag. A 82, 2623 (2002).

    Article  CAS  Google Scholar 

  67. C.A. Pampillo, J. Mater. Sci. 10, 1194 (1975).

    Article  CAS  Google Scholar 

  68. A.S. Argon, J. Megusar, and N.J. Grant, Scr. Metall. 19, 591 (1985).

    Article  CAS  Google Scholar 

  69. D.C.C. Lam and A.C.M. Chong, Mater. Sci. Eng. A 318, 313 (2001).

    Article  Google Scholar 

  70. T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, and K. Higashi, Intermetallics 10, 1071 (2002).

    Article  CAS  Google Scholar 

  71. A.S. Argon, in Materials Science and Technology, edited by H. Mughrabi (VCH, Weinheim, 1993) p. 463.

  72. F. Spaepen, Acta Metall. 25, 407 (1977).

    Article  CAS  Google Scholar 

  73. A.S. Argon, Acta Metall. 27, 47 (1979).

    Article  CAS  Google Scholar 

  74. H. Neuhauser, Scr. Metall. 12, 471 (1978).

    Article  Google Scholar 

  75. U. Ramamurty, M.L. Lee, J. Basu, and Y. Li, Scr. Mater. 47, 107 (2002).

    Article  CAS  Google Scholar 

  76. D. Deng and A.S. Argon, Acta Metall. 34, 2011 (1986).

    Article  CAS  Google Scholar 

  77. D. Deng and A.S. Argon, Acta Metall. 34, 2025 (1986).

    Article  CAS  Google Scholar 

  78. A.I. Taub and F. Spaepen, Acta Metall. 28, 1781 (1980).

    Article  CAS  Google Scholar 

  79. C.C. Hays, C.P. Kim, and W.L. Johnson, Phys. Rev. Lett. 84, 2901 (2000).

    Article  CAS  Google Scholar 

  80. E. Pekarskaya, C.P. Kim, and W.L. Johnson, J. Mater. Res. 16, 2513 (2001).

    Article  CAS  Google Scholar 

  81. F. Szuecs, C.P. Kim, and W.L. Johnson, Acta Mater. 49, 1507 (2001).

    Article  CAS  Google Scholar 

  82. C. Fan, R.T. Ott, and T.C. Hufnagel, Appl. Phys. Lett. 81, 1020 (2002).

    Article  CAS  Google Scholar 

  83. B. Wu, A.C. Lund, C.A. Schuh, and T.G. Nieh (unpublished).

  84. J.G. Wang, B.W. Choi, T.G. Nieh, and C.T. Liu, J. Mater. Res. 15, 913 (2000).

    Article  CAS  Google Scholar 

  85. A. Hodge and T.G. Nieh, Intermetallics (2003, in press).

  86. J.G. Wang and T.G. Nieh, (unpublished).

  87. T.G. Nieh, J. Wadsworth, C.T. Liu, T. Ohkubo, and Y. Hirotsu, Acta Mater. 49, 2887 (2001).

    Article  CAS  Google Scholar 

  88. A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, J. Mater. Res. 16, 2836 (2001).

    Article  CAS  Google Scholar 

  89. G. Subhash, R.J. Dowding and L.J. Kecskes, Mater. Sci. Eng. A 334, 33 (2002).

    Article  Google Scholar 

  90. H.A. Bruck, T. Christman, A.J. Rosakis, and W.L. Johnson, Scr. Metall. Mater. 30, 429 (1994).

    Article  CAS  Google Scholar 

  91. C.T. Liu, L. Heatherly, D.S. Easton, C.A. Carmichael, J.H. Schneibel, C.H. Chen, J.L. Wright, M.H. Yoo, J.A. Horton, and A. Inoue, Metall. Mater. Trans. 29A, 1811 (1998).

    Article  CAS  Google Scholar 

  92. T.C. Hufnagel, T. Jiao, Y. Li, L-Q. Xing, and K.T. Ramesh, J. Mater. Res. 17, 1441 (2002).

    Article  CAS  Google Scholar 

  93. A. Inoue, Prog. Mater. Sci. 43, 365 (1998).

    Article  CAS  Google Scholar 

  94. Y. Li, (unpublished).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuh, C.A., Nieh, T.G. A survey of instrumented indentation studies on metallic glasses. Journal of Materials Research 19, 4 (2004). https://doi.org/10.1557/jmr.2004.19.1.46

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/jmr.2004.19.1.46

Navigation