Skip to main content
Log in

Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load–penetration data

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 May 2005

This article has been updated

Abstract

The connection between parameters that can be measured by means of instrumented indentation with the real mechanical properties has been a matter of discussion for several years. In fact, even hardness is not a readily measurable magnitude since the real contact area depends on both the elastic and plastic properties of the sample. Recently, Dao et al. [Acta Mater49, 3899 (2001)] proposed a method based on numerical fittings to calculate by a forward-reverse algorithm the elastoplastic properties of a sample from the load-penetration curve obtained with a sharp indenter. This work will show, in contrast, that it is not possible to measure uniquely these mechanical properties of a sample in that way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  2. M. Mata, M. Anglada and J. Alcalá: Contact deformation regimes around sharp indentations and the concept of the characteristic strain, J. Mater. Res. 17, 964 (2002).

    Article  CAS  Google Scholar 

  3. Y. Choi, W.-B. Lee, S.-H. Lee and D. Kwon: Indentation curve analysis for pile-up, sink-in and tip-blunting effects in sharp indentations, in Thin Films—Stresses and Mechanical Properties X, edited by S.G. Corcoran, C.-Y. Joo, N.R. Moody, and Z. Suo. (Mater. Res. Soc. Symp. Proc. 795, Warrendale, PA, 2004) p. 11.

    Google Scholar 

  4. J. Alkorta and J. Gil Sevillano: Measuring the strain rate sensitivity by instrumented indentation. Application to an ultra fine grain (equal channel angular pressed) eutectic Sn-Bi alloy, J. Mater. Res. 19, 282 (2004).

    Article  CAS  Google Scholar 

  5. J. Alkorta and J. Sevillano Gil: Medida de la dureza de sólidos mediante nanoindentación, B. Soc. Esp. Cer. Vidrio. (in press, 2005).

    Google Scholar 

  6. K.W. McElhaney, J.J. Vlassak and W.D. Nix: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments, J. Mater. Res. 13, 1300 (1998).

    Article  CAS  Google Scholar 

  7. B. Taljat, T. Zacharia and G.M. Pharr: Pile-up behavior of spherical indentations in engineering materials, in Fundamentals of Nanoindentation and Nanotribology, edited by N.R. Moody, W.W. Gerberich, N. Burnham, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 33.

    Google Scholar 

  8. I.N. Sneddon: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile, Int. J. Engng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  9. I.N. Sneddon: Boussinesq’s problem for a rigid cone, Proc. Cambridge Phil. Soc. 44, 492 (1948).

    Article  Google Scholar 

  10. M. Dao, N. Chollacoop, Van K.J. Vliet, T.A. Venkatesh and S. Suresh: Computational modeling of the forward and reverse problems in instrumented sharp indentation, Acta Mater. 49, 3899 (2001).

    Article  CAS  Google Scholar 

  11. T.-Y. Cheng and M.-C. Cheng: Relationship between hardness, elastic modulus and the work of indentation, Appl. Phys. Lett. 73, 614 (1998).

    Article  CAS  Google Scholar 

  12. T.-Y. Cheng and M.-C. Cheng: Scaling, dimensional analysis, and indentation measurements, Mater. Sci. Eng. R. 44, 91 (2004).

    Article  Google Scholar 

  13. T.-Y. Cheng and M.-C. Cheng: Can stress-strain relationships be obtained from indentation curves using conical or pyramidal indenters? J. Mater. Res. 14, 3493 (1999).

    Article  CAS  Google Scholar 

  14. T.W. Capehart and T.-Y. Cheng: Determining constitutive models from conical indentation: Sensitivity analysis, J. Mater. Res. 18, 827 (2003).

    Article  CAS  Google Scholar 

  15. K.K. Tho, S. Swaddiwudhipong, Z.S. Liu, K. Zeng and J. Hua: Uniqueness of reverse analysis from conical indentation tests, J. Mater. Res. 19, 2498 (2004).

    Article  CAS  Google Scholar 

  16. G.M. Pharr and A. Bolshakov: Understanding nanoindentation unloading curves, J. Mater. Res. 17, 2660 (2002).

    Article  CAS  Google Scholar 

  17. A.F. Bower, N.A. Fleck, A. Needleman and N. Ogbonna: Indentation of a power law creeping solid, Proc. R. Soc. London A441, 97 (1993).

    Google Scholar 

  18. B. Storåkers, S. Biwa and L.-P. Larsson: Similarity analysis of inelastic contact, Int. J. Solids. Struct 34, 3061 (1997).

    Article  Google Scholar 

  19. J.C. Hay, A. Bolshakov and G.M. Pharr: A critical examination of the fundamental relations used in the analysis of nanoindentation data, J. Mater. Res. 14, 2296 (1999).

    Article  CAS  Google Scholar 

  20. N.A. Stillwell and D. Tabor: Elastic recovery of conical indentations, Proc. Phys. Soc. 78, 169 (1961).

    Article  Google Scholar 

  21. V. Marx and H. Balke: A critical investigation of the unloading behavior of sharp indentation, Acta Mater. 45, 3791 (1997).

    Article  CAS  Google Scholar 

  22. K.L. Johnson: Contact Mechanics, 1st ed. (Cambridge University Press, Cambridge, U.K., 1985) p. 175.

    Book  Google Scholar 

  23. M. Mata and J. Alcalá: The role of friction on sharp indentation, J. Mech. Phys. Solids 52, 145 (2004).

    Article  Google Scholar 

  24. M. Futakawa, T. Wakui, Y. Tanabe and I. Ioka: Identification of the constitutive equation by the indentation technique using plural indenters with different apex angles, J. Mater. Res. 16, 2283 (2001).

    Article  CAS  Google Scholar 

  25. N. Chollacoop, M. Dao and S. Suresh: Depth sensing instrumented indentation with dual sharp indenters, Acta Mater. 51, 3713 (2003).

    Article  CAS  Google Scholar 

  26. T.-Y. Cheng and Z. Li: Scaling relationships for indentation measurements, Philos. Mag. A 82, 1821 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alkorta, J., Martínez-Esnaola, J.M. & Gil, J.S. Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load–penetration data. Journal of Materials Research 20, 432–437 (2005). https://doi.org/10.1557/JMR.2005.0053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0053

Navigation