Skip to main content
Log in

Spherical indentation creep following ramp loading

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Elastic-viscoelastic correspondence, utilizing Boltzmann integral operators, was used to generate displacement–time solutions for spherical indentation testing of viscoelastic materials. Solutions were found for creep following loading at a constant loading rate and compared with step-loading solutions. Experimental creep tests were performed with different loading rate–peak load level combinations on glassy and rubbery polymeric materials. The experimental data were fit to the spherical indentation ramp–creep solutions to obtain values of shear modulus and time-constants; good agreement was found between the experimental results and known modulus values. A multiple ramp-and-hold protocol was examined for the measurement of creep responses at several loads (and depths) within the same test. Emphasis is given to the use of multiple experiments (or multiple levels within a single experiment) to test a priori assumptions made in the correspondence solutions regarding linear viscoelastic material behavior and the creep function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  2. M.L. Oyen and R.F. Cook: Load-displacement behavior during sharp indentation of viscous-elastic-plastic materials. J. Mater. Res. 18, 139 (2003).

    Article  CAS  Google Scholar 

  3. M.L. Oyen, R.F. Cook, N.R. Moody, and J.A. Emerson: Indentation responses of time-dependent films on stiff substrates. J. Mater. Res. 19, 2487 (2004).

    Article  CAS  Google Scholar 

  4. B.J. Briscoe, L. Fiori, and E. Pelillo: Nano-indentation of polymeric surfaces. J. Phys. D: Appl. Phys. 31, 2395 (1998).

    Article  CAS  Google Scholar 

  5. M. Sakai and S. Shimizu: Indentation rheometry for glass-forming materials. J. Non-Cryst. Solids 282, 236 (2001).

    Article  CAS  Google Scholar 

  6. L. Cheng, X. Xia, W. Yu, L.E. Scriven, and W.W. Gerberich: Flat-punch indentation of a viscoelastic material. J. Polym. Sci., Part B: Polym. Phys. 38, 10 (2000).

    Article  CAS  Google Scholar 

  7. L. Cheng, X. Xia, L.E. Scriven, and W.W. Gerberich: Sphericaltip indentation of viscoelastic material. Mech. Mater. 37, 213 (2005).

    Article  Google Scholar 

  8. C.Y. Zhang, Y.W. Zhang, and K.Y. Zeng: Extracting the mechanical properties of a viscoelastic polymeric film on a hard elastic substrate. J. Mater. Res. 19, 3053 (2004).

    Article  CAS  Google Scholar 

  9. E.H. Lee and J.R.M. Radok: Contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438 (1960).

    Article  Google Scholar 

  10. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1985).

    Book  Google Scholar 

  11. Y-T. Cheng and C-M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44, 94 (2004).

    Article  Google Scholar 

  12. N.R. Moody, E.D. Reedy, Jr., and M.S. Kent: Physical basis for interfacial traction-separation models. Report SAND2002-8567 (Sandia National Laboratories, Albuquerque, NM, and Livermore, CA, November 2002).

    Book  Google Scholar 

  13. J.A. Emerson, R.K. Giunta, D.E. Reedy, D.P. Adams, P.A. Lemke, and N.R. Moody: Process-based quality tools to verify cleaning and surface preparation. Report SAND2003-1591 (Sandia National Laboratories, Albuquerque, NM, and Livermore, CA, May, 2003).

    Book  Google Scholar 

  14. R.F. Cook: personal communication (2004).

  15. M.L. Oyen: Spherical indentation creep following ramp loading, in Fundamentals of Nanoindentation and Nanotribology III, edited by K.J. Wahl, N. Huber, A.B. Mann, D.F. Bahr, and Y-T. Cheng (Mater. Res. Soc. Symp. Proc. 841, Warrendale, PA, 2005), R5.9.1, p. 211.

    CAS  Google Scholar 

  16. M.C. Chang, C.C. Ko, C.C. Liu, W.H. Douglas, R. DeLong, W-J. Seong, J. Hodges, and K-N. An: Elasticity of alveolar bone near dental implant-bone interfaces after one month’s healing. J. Biomech. 36, 1209 (2003).

    Article  CAS  Google Scholar 

  17. M.S. Kent, E.D. Reedy, Jr., and M.J. Stevens: Molecular-to continuum fracture analysis of thermosetting polymer/solid interfaces. Report SAND2000-0026, November 2002, Sandia National, Laboratories, Report SAND2000-0026, November 2002, Sandia National, Laboratories, Albuquerque, NM and Livermore, CA.

  18. J.A. Payne, A. Strojny, L.F. Francis, and W.W. Gerberich: Indentation measurements using a dynamic mechanical analyzer. Polymer Eng. Sci. 38, 1529 (1998).

    Article  CAS  Google Scholar 

  19. A.J. Bushby, V.L. Ferguson, and A. Boyde: Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmethacrylate. J. Mater. Res. 19, 249 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Oyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oyen, M.L. Spherical indentation creep following ramp loading. Journal of Materials Research 20, 2094–2100 (2005). https://doi.org/10.1557/JMR.2005.0259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0259

Navigation