Skip to main content
Log in

Flexible, conjugated polymer-fullerene-based bulk-heterojunction solar cells: Basics, encapsulation, and integration

  • Articles—Energy and The Environment Special Section
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Organic solar cells based on conjugated polymer:fullerene blends show nowadays efficiencies above 4%. After briefly presenting the science of bulk-heterojunction solar cells, we report herein a shelf lifetime study performed by encapsulating the cells in a flexible and transparent gas barrier material. This method allows lifetimes as reported for glass encapsulation. Moreover, we propose a new approach to pattern organic solar cells and design large-scale modules. This technique, based on selective Nd:yttrium aluminum garnet (YAG) laser etching, potentially enables low-cost, high-speed roll-to-roll operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Jäger-Waldau: PV Status Report 2003 (Institute for Environment and Sustainability European Commission Ispra Italy 2003).

    Google Scholar 

  2. C.W. Tang: Two layer organic photovoltaic cell. Appl. Phys. Lett. 48 183 (1986).

    Article  CAS  Google Scholar 

  3. P. Peumans A. Yakimov and S.R. Forrest: Small molecular weight organic thin-film phtodetectors and solar cells. J. Appl. Phys. 93 3693 (2003).

    Article  CAS  Google Scholar 

  4. G. Yu J. Gao J.C. Hummelen F. Wudl and A.J. Heeger: Polymer photovoltaic cells: Enhanced efficiencies via network of internal donor-acceptor heterojuntions. Science 270 1789 (1995).

    Article  CAS  Google Scholar 

  5. C.J. Brabec N.S. Sariciftci and J.K. Hummelen: Plastic solar cells. Adv. Funct. Mater. 11 15 (2001).

    Article  CAS  Google Scholar 

  6. H. Hoppe and N.S. Sariciftci: Organic solar cells: An overview. J. Mater. Res. 19 1924 (2004).

    Article  CAS  Google Scholar 

  7. O’D. Reagan and GräM. tzel: A low cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353 737 (1991).

    Article  Google Scholar 

  8. N.C. Greenham X. Peng and A.P. Alivisatos: Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 54 17628 (1996).

    Article  CAS  Google Scholar 

  9. S.R. Forrest: The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428 911 (2004).

    Article  CAS  Google Scholar 

  10. F. Wudl P.M. Allemand G. Srdanov Z. Ni and D. McBranch: Polymers and an unusual molecular crystal with nonlinear optical properties in Materials for Nonlinear Optics: Chemical Perspectives Vol. 455 edited by S.R. Marder J.E. Sohn and G.D. Stucky (Am. Chem. Soc. Washington DC 1991) p. 683.

    Article  CAS  Google Scholar 

  11. S.E. Shaheen R. Radspinner N. Peyghambarian and G.E. Jabbour: Fabrication of bulk heterojunction plastic solar cells by screen printing. Appl. Phys. Lett. 79 2996 (2001).

    Article  CAS  Google Scholar 

  12. H. Sirringhaus T. Kawase R.H. Friend T. Shimoda M. Inbasekaran W. Wu and E.P. Woo: High-resolution inkjet printing of all-polymer transistor circuits. Science 290 2123 (2000).

    Article  CAS  Google Scholar 

  13. C.J. Brabec: Organic photovoltaics: Technology and market. Sol. Energy Mater. Sol. Cells 83 273 (2004).

    Article  CAS  Google Scholar 

  14. “Konarka to Acquire Solar Technology,” New York Times, September 7 2004.

  15. “Konarka to Acquire Siemens’ Organic Photovoltaic Research Activities,” Konarka press release September 7 2004.

  16. H. Bässler: Excitons in conjugated polymers in Primary Photoexcitations in Conjugated Polymers: Molecular Exciton Versus Semiconductor Band Model edited by N.S. Sariciftci (World Scientific Singapore 1997) p. 51.

  17. A.J. Heeger: Nature of the primary photo-excitations in poly(arylene-vinylenes): Bound neutral excitons or charged polarons pairs in Primary Photoexcitations in Conjugated Polymers: Molecular Exciton Versus Semiconductor Band Model edited by N.S. Sariciftci (World Scientific Singapore 1997) p. 20.

    Google Scholar 

  18. B.A. Gregg: Excitonic solar cells. J. Phys. Chem. B 107 4688 (2003).

    Article  CAS  Google Scholar 

  19. L. Onsager: Initial recombination of ions. Phys. Rev. 54 554 (1938).

    Article  CAS  Google Scholar 

  20. A. Haugeneder M. Neges C. Kallinger W. Spirkl U. Lemmer J. Feldmann U. Scherf E. Harth GüA. gel and MüK. llen: Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures. Phys. Rev. B 59 15346 (1999).

    Article  CAS  Google Scholar 

  21. N.S. Sariciftci L. Smilowitz A.J. Heeger and F. Wudl: Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258 1474 (1992).

    Article  CAS  Google Scholar 

  22. S. Morita A.A. Zakhidov and K. Yoshino: Doping effect of buckminsterfullerene in conducting polymer: Change of absorption spectrum and quenching of luminescence. Solid State Commun. 82 249 (1992).

    Article  CAS  Google Scholar 

  23. C.J. Brabec G. Zerza G. Cerullo De S. Silvestri S. Luzzati J.C. Hummelen and N.S. Sariciftci: Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem. Phys. Lett. 340 232 (2001).

    Article  CAS  Google Scholar 

  24. L. Smilowitz N.S. Sariciftci R. Wu C. Gettinger A.J. Heeger and F. Wudl: Photoexcitation spectroscopy of conducting-polymer-C60 composites: Photoinduced electron transfer. Phys. Rev. B 47 13835 (1993).

    Article  CAS  Google Scholar 

  25. V.I. Arkhipov P. Heremans and BäH. ssler: Why is exciton dissociation so efficient at the interface between a conjugated polymer and an electron acceptor?Appl. Phys. Lett. 82 4605 (2003).

    Article  CAS  Google Scholar 

  26. J.J.M. Halls C.A. Walsh N.C. Greenham E.A. Marseglia R.H. Friend S.C. Moratti and A.B. Holmes: Efficient photodiodes from interpenetrating polymer networks. Nature 376 498 (1995).

    Article  CAS  Google Scholar 

  27. M. Theander A. Yartsev D. Zigmantas SundströV. m W. Mammo M.R. Andersson and InganäO. s: Photoluminescence quenching at a polythiophene/C60 heterojunction. Phys. Rev. B 60 12957 (2000).

    Article  Google Scholar 

  28. G. Yu J. Gao J.C. Hummelen F. Wudl and A.J. Heeger: Polymer photovoltaic cells: Enhanced efficiencies via network of internal donor-acceptor heterojunctions. Science 270 1789 (1995).

    Article  CAS  Google Scholar 

  29. P. Schilinsky C. Waldauf J. Hauch and C.J. Brabec: Simulation of light intensity dependent current characteristics of polymer. J. Appl. Phys. 95 2816 (2004).

    Article  CAS  Google Scholar 

  30. WüP. rfel: Physics of Solar Cells (Wiley VCH Weinheim Germany 2004).

    Google Scholar 

  31. C.J. Brabec A. Cravino D. Meissner N.S. Sariciftci M.T. Rispens L. Sanchez J.C. Hummelen and T. Fromherz: The influence of materials work function on the open circuit voltage of plastic solar cells. Thin Solid Films 403–404 368 (2002).

    Article  Google Scholar 

  32. H. Kim S.H. Jin H. Suh and K. Lee: Origin of the open circuit voltage in conjugated polymer-fullerene photovoltaic cells. Proc. SPIE 5215 111 (2004).

    Article  CAS  Google Scholar 

  33. H. Frohne S.E. Shaheen C.J. Brabec D. Mueller N.S. Sariciftci and K. Meerholz: Influence of the anodic work function on the performance of organic solar cells. Chem. Phys. Chem. 9 795 (2002).

    Article  Google Scholar 

  34. C.J. Brabec A. Cravino D. Meissner N.S. Sariciftci T. Fromherz M.T. Rispens L. Sanchez and J.C. Hummelen: Origin of the open circuit voltage of plastic solar cells. Adv. Funct. Mater. 11 374 (2001).

    Article  CAS  Google Scholar 

  35. L.J. Brillson: The structure and properties of metal-semiconductor interfaces. Surf. Sci. Rep. 2 123 (1982).

    Article  CAS  Google Scholar 

  36. S.C. Veenstra A. Heeres G. Hadziioannou G.A. Sawatzky and H.T. Jonkman: On interface dipole layers between C60 and Ag or Au. Appl. Phys. A: Mater. Sci. Proc. 75 661 (2002).

    Article  CAS  Google Scholar 

  37. C. Winder and N.S. Sariciftci: Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. J. Mater. Chem. 14 1077 (2004).

    Article  CAS  Google Scholar 

  38. S.E. Shaheen C.J. Brabec N.S. Sariciftci F. Padinger T. Fromherz and J.C. Hummelen: 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78 841 (2001).

    Article  CAS  Google Scholar 

  39. X. Yang J.K.J. van Duren R.A.J. Janssen M.A.J. Michels and J. Loos: Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerence plastic photovoltaic devices. Macromolecules 37 2151 (2004).

    Article  CAS  Google Scholar 

  40. H. Hoppe M. Niggemann C. Winder J. Kraut R. Hiesgen A. Hinsch D. Meissner and N.S. Sariciftci: Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells. Adv. Funct. Mater. 14 1005 (2004).

    Article  CAS  Google Scholar 

  41. J.K.J. van Duren X. Yang J. Loos C.W.T. Bulle-Lieuwma A.B. Sieval J.C. Hummelen and R.A.J. Janssen: Relating the morphology of poly(p-phenylenvinylene)/methanofullerene blends to solar cell performance. Adv. Funct. Mater. 14 425 (2004).

    Article  CAS  Google Scholar 

  42. P.W.M. Blom M.J.M. de Jong and M.G. Van Munster: Electric-filed and temperature dependence of the hole mobility in poly(p -phenylenevinylene). Phys. Rev. B 55 656 (1997).

    Article  Google Scholar 

  43. A. Mozer and N.S. Sariciftci: Negative electric field dependance of charge carrier drift mobility in conjugated semiconducting polymers. Chem. Phys. Lett. 389 438 (2004).

    Article  CAS  Google Scholar 

  44. A. Mozer P. Denk M. Scharber H. Neugebauer N.S. Sariciftci P. Wagner L. Lutsen and D. Vanderzande: Novel regiospecific MDMO-PPV copolymer with improved charge transport for bulk heterojunction solar cells. J. Phys. Chem. B 108 5235 (2004).

    Article  CAS  Google Scholar 

  45. V.D. Mihailetchi J.K.J. van Duren P.W.M. Blom J.C. Hummelen R.A.J. Janssen J.M. Kroom M.T. Rispens W.J.H. Verhees and M.M. Wienk: Electron transport in a methanofullerene. Adv. Funct. Mater. 13 43 (2003).

    Article  CAS  Google Scholar 

  46. A.J. Mozer N.S. Sariciftci L. Lutsen D. Vanderzande ÖR. sterbacka M. Westerling and G. Juska: Charge transport and recombination in bulk heterojunction solar cells studied by the photoindinced charge extraction in linearily increasing voltage technique. Appl. Phys. Lett. 86 112104 (2005).

    Article  CAS  Google Scholar 

  47. C. Melzer E.J. Koop W.D. Mihailetchi and P.W. Blom: Hole transport in poly(phenylene vinylene)/methanofullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 14 865 (2004).

    Article  CAS  Google Scholar 

  48. Y. Cao G. Yu C. Zhang R. Menon and A.J. Heeger: Polymer light-emitting diodes with polyethylene dioxythiophene–polystyrene sulfonate as the transparent anode. Synth. Met. 87 171 (1997).

    Article  CAS  Google Scholar 

  49. C.J. Brabec S.E. Shaheen C. Winder N.S. Sariciftci and P. Denk: Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl. Phys. Lett. 80 1288 (2002).

    Article  CAS  Google Scholar 

  50. L.S. Hung C.W. Tang and M.G. Mason: Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Appl. Phys. Lett. 70 152 (1997).

    Article  CAS  Google Scholar 

  51. J. Morgado R.H. Friend and F. Cacialli: Environmental aging of poly(p -phenylenevinylene) based light-emitting diodes. Synth. Met. 114 189 (2000).

    Article  CAS  Google Scholar 

  52. D.G.J. Sutherland J.A. Carlisle P. Elliker G. Fox T.W. Hagler I. Jimenez H.W. Lee K. Pakbaz L.J. Terminello S.C. Williams F.J. Himpsel D.K. Shuh W.M. Tong J.J. Lia T.A. Callcott and D.L. Ederer: Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy. Appl. Phys. Lett. 68 2046 (1996).

    Article  CAS  Google Scholar 

  53. R.D. Scurlock B. Wang P.R. Ogilby J.R. Sheats and R.L. Clough: Singlet oxygen as a reactive intermediate in the photodegradation of an electroluminescent polymer. J. Am. Chem. Soc. 117 10194 (1995).

    Article  CAS  Google Scholar 

  54. S. Kumar A.K. Biswas V.K. Shukla A. Awasthi R.S. Anand and J. Narain: Application of spectroscopic ellipsometry to probe the environmental and photo-oxidative degradation of poly(p -phenylenevinylene) (PPV). Synth. Met. 139 751 (2003).

    Article  CAS  Google Scholar 

  55. L.M. Do E.M. Han Y. Nidome M. Fujihira T. Kanno S. Yoshida A. Maeda and A.J. Ikushima: Observation of degradation processes of Al electrodes in organic electroluminescent devices by electroluminescence microscopy atomic force microscopy scanning electron microscopy and Auger electron spectroscopy. J. Appl. Phys. 76 5118 (1994).

    Article  CAS  Google Scholar 

  56. M. Schaer NüF. esch D. Berner W. Leo and L. Zuppiroli: Water vapor and oxygen degradation mechanisms in organic light emitting diodes. Adv. Funct. Mater. 11 116 (2001).

    Article  CAS  Google Scholar 

  57. H. Neugebauer C.J. Brabec J.C. Hummelen and N.S. Sariciftci: Stability and photodegradation mechanisms of conjugatedpolymer/fullerene plastic solar cells. Sol. Energy Mater. Sol. Cells 61 35 (2000).

    Article  CAS  Google Scholar 

  58. F. Padinger T. Fromherz P. Denk C.J. Brabec J. Zettner T. Hierl and N.S. Sariciftci: Degradation of bulk heterojunction solar cells operated in an inert gas atmosphere: A systematic study. Synth. Met. 121 1605 (2001).

    Article  CAS  Google Scholar 

  59. J.S. Lewis and M.S. Weaver: Thin film permeation barrier technology for flexible organic light emitting device. IEEE J. Selec. Topics. Quantum Elect. 10 45 (2004).

    Article  CAS  Google Scholar 

  60. Y. Leterrier: Durability of nanosized oxygen barrier coatings on polymers. Prog. Mater. Sci. 48 1 (2003).

    Article  CAS  Google Scholar 

  61. A.S. Sobrinho da Silva M. Latreche G. Czeremuszkin Klemberg-J.E. Sapieha and M.R. Wertheimer: Transparent barrier coatings on poly(ethylene terephthalate) by single frequency and dual frequency plasma enhanced chemical vapor deposition. J. Vac. Sci. Technol. A 16 3190 (1998).

    Article  Google Scholar 

  62. A.S. Sobrinho da Silva G. Czeremuszkin M. Latreche G. Dennler and M.R. Wertheimer: A study of defects in ultra-thin transparent coatings on polymers. Surf. Coat. Technol. 116–119 1204 (1999).

    Article  Google Scholar 

  63. G. Russi and M. Nulman: Effect of local flows in polymeric permeation reducing barrier. J. Appl. Phys. 74 5471 (1993).

    Article  Google Scholar 

  64. A.G. Erlat R.J. Spontak R.P. Clarke T.C. Robinson P.D. Haaland Y. Tropha N.G. Harvey and E.A. Vogler: SiOx gas barrier coatings on polymer substrates: Morphology and gas transport considerations. J. Phys. Chem. B 103 6047 (1999).

    Article  CAS  Google Scholar 

  65. J.D. Affinito M.E. Gross C.A. Coronado G.L. Graff E.N. Greenwell and P.M. Martin: A new method for fabricating transparent barrier layers. Thin Solid Films 290–291 63 (1996).

    Article  Google Scholar 

  66. J.D. Affinito M.E. Gross P.A. Mournier M.K. Shi and G.L. Graff: Ultrahigh rate wide area plasma polymerized films from high molecular weight/low vapor pressure liquid or solid monomer precursors. J. Vac. Sci. Technol. A 17 1974 (1999).

    Article  CAS  Google Scholar 

  67. M.S. Weaver L.A. Michalski K. Rajan M.A. Rothman J.A. Silvernail P.E. Burrows G.L. Graff M.E. Gross P.M. Martin M. Hall E. Mast C. Bonham W. Bennett and M. Zumhoff: Organic light-emitting devices with extended operating lifetimes on plastic substrates. Appl. Phys. Lett. 81 2929 (2002).

    Article  CAS  Google Scholar 

  68. A.B. Chwang M.A. Rothman S.Y. Mao R.H. Hewitt M.S. Weaver J.A. Sivernail K. Rajan M. Hack J.J. Brown X. Chu L. Moro T. Krajewski and N. Rutherford: Thin film encapsulated flexible organic electroluminescent displays. Appl. Phys. Lett. 83 413 (2003).

    Article  CAS  Google Scholar 

  69. S. Schuller P. Schilinsky J. Hauch and C.J. Brabec: Determination of the degradation constant of bulk heterojunction solar cells by accelerated lifetime measurements. Appl. Phys. A 79 37 (2004).

    Article  CAS  Google Scholar 

  70. T.S. Mäkelä Pienimaa and S. Jussila: Lithographic patterning of conductive polyaniline. Synth. Met. 101 705 (1999).

    Article  Google Scholar 

  71. T. Granlund T. Nyberg L. Roman Stolz M. Svensson and O. Inganäs: Patterning of polymer light-emitting diodes with soft lithography. Adv. Mater. 12 269 (2000).

    Article  CAS  Google Scholar 

  72. Y.H. Tak C.N. Kim M.S. Kim K.B. Kim M.H. Lee and S.T. Kim: Novel patterning method using Nd:YAG and Nd: YVO4 lasers for organic light emitting diodes. Synth. Met. 138 497 (2003).

    Article  CAS  Google Scholar 

  73. U. Akimasa and K. Susumu: Method of fabricating integrated thin film solar cells. U.S. Patent No. 6 168 968 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Dennler.

Additional information

Address all correspondence to this author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dennler, G., Lungenschmied, C., Neugebauer, H. et al. Flexible, conjugated polymer-fullerene-based bulk-heterojunction solar cells: Basics, encapsulation, and integration. Journal of Materials Research 20, 3224–3233 (2005). https://doi.org/10.1557/jmr.2005.0399

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0399

Navigation