Skip to main content
Log in

Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate

  • Article—Energy and The Environment Special Section
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2006

This article has been updated

Abstract

Numerous studies have examined arsenic adsorption on varying adsorbents including iron oxides, aluminum hydroxides, alumina, and carbon as a means of arsenic removal in drinking water treatments. The objectives of this study were to evaluate the effect of magnetite particle size on the adsorption and desorption behavior of arsenite and arsenate, and to investigate the competitive adsorption between natural organic matter (NOM) and arsenic. Increases in adsorption maximum capacities for arsenite and arsenate were observed with decreasing magnetite particle size. Arsenic desorption is hysteretic, more so with the smaller nanoparticles. Such desorption hysteresis might result from a higher arsenic affinity for magnetite nanoparticles. In the presence of NOM, substantial decrease in arsenic sorption to magnetite nanoparticles was observed. It would be beneficial to thoroughly investigate adsorption and desorption of arsenic on magnetite nanoparticles for further practical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. M. Bissen and F.H. Frimmel: Arsenic—A review. Part I: Occurrence toxicity speciation mobility. Acta Hydroch. Hydrob. 31 9 (2003).

    Article  CAS  Google Scholar 

  2. L.C.D. Anderson and K.W. Bruland: Biogeochemistry of arsenic in natural waters: The importance of methylated species. Environ. Sci. Technol. 25 420 (1991).

    Article  CAS  Google Scholar 

  3. W.P. Tseng H.M. Chu S.W. How J.M. Fong C.S. Lin and S. Yeh: Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J. Nat. Cancer Inst. 40 453 (1968).

    CAS  Google Scholar 

  4. Clarifications to compliance and new source contaminants monitoring. Assessed on April 2005. http://www.epa.gov/safewater/ars/arsenic_finalrule.pdf.

  5. L.G. Twidwell J. McCloskey P. Miranda and M. Gale: Technologies and potential technologies for removing arsenic from process and mine wastewater in Proceedings Global Symposium on Recycling Waste Treatment and Clean Technology, edited by I. Gaballah J. Hager and R. Solozabal Editors. (TMS Warrendale PA. 1999) pp. 1715–1726.

  6. M. Bissen and F.H. Frimmel: Arsenic—A review. Part II: Oxidation of arsenic and its removal in water treatment. Acta Hydroch. Hydrob. 31 97 (2003).

    Article  CAS  Google Scholar 

  7. M.L. Pierce and C.B. Moore: Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res. 15 1247 (1982).

    Article  Google Scholar 

  8. K.P. Raven A. Jain and R.H. Loeppert: Arsenite and arsenate adsorption on ferrihydrite: Kinetics equilibrium and adsorption envelopes. Environ. Sci. Technol. 32 344 (1998).

    Article  CAS  Google Scholar 

  9. G.Y.J. Onoda and P.L. DeBruyn: Proton adsorption at the ferric oxide/aqueous solution interface. Surf. Sci. 4 48 (1966).

    Article  CAS  Google Scholar 

  10. A. Jain and R.H. Loeppert: Effect of competing anions on the adsorption of arsenate and arsenite by ferrihydrite. J. Environ. Qual. 29 1422 (2000).

    Article  CAS  Google Scholar 

  11. S. Dixit and J.G. Hering: Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ. Sci. Technol. 37 4182 (2003).

    Article  CAS  Google Scholar 

  12. S. Fendorf M.J. Eick and P. Grossl: Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ. Sci. Technol. 31 315 (1997).

    Article  CAS  Google Scholar 

  13. A. Manceau: The mechanism of anion adsorption on ironoxides—Evidence for the bonding of arsenate tetrahedra on free Fe(O,OH)(6) edges. Geochim. Cosmochim. Acta 59 3647 (1995).

    Article  CAS  Google Scholar 

  14. X.H. Sun and H.E. Doner: An investigation of arsenate and arsenite bonding structure on goethite by FTIR. Soil Sci. 161 865 (1996).

    Article  CAS  Google Scholar 

  15. G.A. Waychunas B.A. Rea C.C. Fuller and J.A. Davis: Surface chemistry of ferrihydrite Part l. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim. Cosmochim. Acta 57 2251 (1993).

    Article  CAS  Google Scholar 

  16. B.A. Manning M.L. Hunt C. Amrhein and J.A. Yarmoff: Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products. Environ. Sci. Technol. 36 5455 (2002).

    Article  CAS  Google Scholar 

  17. S.R. Hinkle and D.J. Polette: Arsenic in Ground Water of the Willamette Basin Oregon (U.S. Geological Survey Portland OR 1999).

    Google Scholar 

  18. Y. Gao R. Wahi A.T. Kan J.C. Falkner V.L. Colvin and M.B. Tomson: Adsorption of cadmium on anatase nanoparticles-effect of crystal size and pH. Langmuir 20 9585 (2004).

    Article  CAS  Google Scholar 

  19. Y. Yin H.E. Allen C.P. Huang and P.F. Sanders: Adsorption/desorption isotherms of Hg(II) by soil. Soil Sci. 162 35 (1997).

    Article  CAS  Google Scholar 

  20. C.C. Ainsworth J.L. Pilou P.L. Gassman and Van Der W.G. Sluys: Cobalt cadmium and lead sorption on hydrous iron oxide: Residence time effect. Soil Sci. Soc. Am. J. 58 1615 (1994).

    Article  CAS  Google Scholar 

  21. M.J. DeMarco A.K. SenGupta and J.E. Greenleaf: Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Res. 37 164 (2003).

    Article  CAS  Google Scholar 

  22. H. Genç-Fuhrman J.C. Tjell and D. McConchie: Adsorption of arsenic from water using activated neutralized red mud. Environ. Sci. Technol. 38 2428 (2004).

    Article  CAS  Google Scholar 

  23. C.A.J. Appelo Van der M.J.J. Weiden C. Tournassat and L. Charlet: Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ. Sci. Technol. 36 3096 (2002).

    Article  CAS  Google Scholar 

  24. B.P. Jackson and W.P. Miller: Effectiveness of phosphate and hydroxide for desorption of arsenic and selenium species from iron oxides. Soil Sci. Soc. Am. J. 64 1616 (2000).

    Article  CAS  Google Scholar 

  25. A. Violante and M. Pigna: Competitve sorption of arsenate and phosphate on different clay minerals and soils. Soil Sci. Soc. Am. J. 66 1788 (2002).

    Article  CAS  Google Scholar 

  26. B.A. Manning and S. Goldberg: Modeling arsenate competitive adsorption on kaolinite montmorillonite and illite. Clays Clay Miner. 44 609 (1996).

    Article  CAS  Google Scholar 

  27. P.J. Swedlund and J.G. Webster: Adsorption and polymerisation of silicic acid on ferrihydrite and its effect on arsenic adsorption. Water Res. 33 3413 (1999).

    Article  CAS  Google Scholar 

  28. E. Smith R. Naidu and A.M. Alston: Chemistry of inorganic arsenic in soils: II. Effect of phosphorous sodium and calcium on arsenic sorption. J. Environ. Qual. 31 557 (2002).

    CAS  Google Scholar 

  29. C.M. Su and R.W. Puls: Arsenate and arsenite removal by zerovalent iron: Effects of phosphate silicate carbonate borate sulfate chromate molybdate and nitrate relative to chloride. Environ. Sci. Technol. 35 4562 (2001).

    Article  CAS  Google Scholar 

  30. A.D. Redman D.L. Macalady and D. Ahmann: Natural organic matter affects arsenic speciation and sorption onto hematite. Environ. Sci. Technol. 36 2889 (2002).

    Article  CAS  Google Scholar 

  31. C.C. Fuller J.A. Davis and G.A. Waychunas: Surface-chemistry of ferrihydrite 2. Kinetics of arsenate adsorption and corprecipitation. Geochim. Cosmochim. Acta 57 2271 (1993).

    Article  CAS  Google Scholar 

  32. K. Fukushi and T. Sato: Using a surface complexation model to predict the nature and stability of nanoparticles. Environ. Sci. Technol. 39 1250 (2005).

    Article  CAS  Google Scholar 

  33. G. Martra: Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: Relationships between surface morphology and chemical behaviour. Appl. Catal. Gen. 200 275 (2000).

    Article  CAS  Google Scholar 

  34. A. Luttge E.W. Bolton and A.C. Lasaga: An interferometric study of the dissolution kinetics of anorthite: The role of reactive surface area: in Biogeochemical cycles and their evolution over geologic time. Am. J. Sci. 299 652 (1999).

    Article  CAS  Google Scholar 

  35. Z. Bilkova M. Slovakova A. Lycka D. Horak J. Lenfeld J. Turkova and J. Churacek: Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly(HEMA-co-EDMA) and magnetic poly(HEMA-co-EDMA) microspheres. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 770(1–2) 25 (2002).

    Article  CAS  Google Scholar 

  36. Z. Bilkova M. Slovakova D. Horak J. Lenfeld and J. Churacek: Enzymes immobilized on magnetic carriers: Efficient and selective system for protein modification. J. Chromatography B 770 177 (2002).

    Article  CAS  Google Scholar 

  37. W. Sun F. Khosravi H. Albrechtsen L.Y. Brovko and M.W. Griffiths: Comparison of ATP and in vivo bioluminescence for assessing the efficiency of immunomagnetic sorbents for live Escherichia coli O157: H7 cells. J. Appl. Microbiol. 92 1021 (2002).

    Article  CAS  Google Scholar 

  38. S. Bucak D.A. Jones P.E. Laibinis and T.A. Hatton: Protein separations using colloidal magnetic nanoparticles. Biotechnol. Prog. 19 477 (2003).

    Article  CAS  Google Scholar 

  39. G.D. Moeser K.A. Roach W.H. Green P.E. Laibinis and T.A. Hatton: Water-based magnetic fluids as extractants for synthetic organic compounds. Ind. Eng. Chem. Res. 41 4739 (2002).

    Article  CAS  Google Scholar 

  40. W.W. Yu J.C. Falkner B.S. Shih and V.L. Colvin: Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent. Chem. Mater. 16 3318 (2004).

    Article  CAS  Google Scholar 

  41. R.G. Bates: Determination of pH: Theory and Practice (John Wiley & Sons New York 1973).

    Google Scholar 

  42. W. Stumm and J.J. Morgan: Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (Wiley-Interscience New York 1995).

    Google Scholar 

  43. P.H. Tewari and A.W. McClean: Temperature dependence of point of zero charge of alumina and magnetite. J. Colloid Interface Sci. 40 267 (1972).

    Article  CAS  Google Scholar 

  44. N. Marmier A. Delisee and F. Fromage: Surface complexation modeling of Yb(III) Ni(II) and Cs(I) sorption on magnetite. J. Colloid Interface Sci. 211 54 (1999).

    Article  CAS  Google Scholar 

  45. Z. Cheng A.V. Geen C. Jing X. Meng A. Seddique and K.M. Ahmed: Performance of a household-level arsenic removal system during 4-month deployments in Bangladesh. Environ. Sci. Technol. 38 3442 (2004).

    Article  CAS  Google Scholar 

  46. X.G. Meng and R.D. Letterman: Effect of component oxide interactions on the adsorption properties of mixed oxides. Environ. Sci. Technol. 27 970 (1993).

    Article  CAS  Google Scholar 

  47. F.M.M. Morel and J.G. Hering: Principles and Applications of Aquatic Chemistry (Wiley & Sons New York 1993).

    Google Scholar 

  48. Y. Gao A.T. Kan and M.B. Tomson: Critical evaluation of desorption phenomena of heavy metals from natural sediments. Environ. Sci. Technol. 37 5566 (2003).

    Article  CAS  Google Scholar 

  49. W. Stumm and J.J. Morgan: Aquatic Chemistry Chemical Equilibria and Rates in Natural Water 2nd ed. (Wiley-Interscience New York 1996).

    Google Scholar 

  50. A.T. Kan G. Fu M. Hunter W. Chen C.H. Ward and M.B. Tomson: Irreversible sorption of neutral hydrocarbons to sediments: Experimental observations and model predictions. Environ. Sci. Technol. 32 892 (1998).

    Article  CAS  Google Scholar 

  51. J.A. Munoz A. Gonzalo and M. Valiente: Arsenic adsorption by Fe(III)-loaded open-celled cellulose sponge. Thermodynamic and selectivity aspects. Environ. Sci. Technol. 36 3405 (2002).

    Article  CAS  Google Scholar 

  52. W.W. Yu J.C. Falkner C.T. Yavuz and V.L. Colvin: Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem. Comm. 20 2306 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Kan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yean, S., Cong, L., Yavuz, C.T. et al. Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. Journal of Materials Research 20, 3255–3264 (2005). https://doi.org/10.1557/jmr.2005.0403

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0403

Navigation