Skip to main content
Log in

Identification of viscoplastic material parameters from spherical indentation data: Part I. Neural networks

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, a new method for the identification of material parameters is presented. Neural networks, which are trained on the basis of finite element simulations, are used to solve the inverse problem. The material parameters to be identified are part of a viscoplasticity model that has been formulated for finite deformations and implemented in the finite element code ABAQUS. A proper multi-creep loading history was developed in a previous paper using a phenomenological model for viscoplastic spherical indentation. Now, this phenomenological model is replaced by a more realistic finite element model, which provides fast computation and numerical solutions of high accuracy at the same time. As a consequence, existing neural networks developed for the phenomenological model have been extended from a power law hardening with two material parameters to an Armstrong-Frederick hardening rule with three parameters. These are the yield stress, the initial slope of work hardening, and maximum hardening stress of the equilibrium response. In addition, elastic deformation is taken into account. The viscous part is based on a Chaboche-like overstress model, consisting of two material parameters determining velocity dependence and overstress as a function of the strain rate. The method has been verified by additional finite element simulations. Its application for various metals will be presented in Part II, [J. Mater. Res. 21, 677 (2006)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Field, M. Swain: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 (1993).

    Article  CAS  Google Scholar 

  2. S. Jayaraman, G. Hahn, W. Oliver, C. Rubin: Determination of monotonic stress strain curve of hard materials from ultra-low-load indentation tests. Int. J. Solids Struct. 35, 365 (1998).

    Article  Google Scholar 

  3. S. Kucharski, Z. Mroz: Identification of hardening parameters of metals from spherical indentation tests. Trans. ASME H, J. Eng. Mater. Technol. 135, 245 (2001).

    Article  Google Scholar 

  4. J.H. Ahn, D. Kwon: Derivation of plastic stress-strain relationship from ball indentations. J. Mater. Res. 16, 3170 (2001).

    Article  CAS  Google Scholar 

  5. M. Dao, N. Chollacoop, Van K.J. Vliet, T.A. Venkatesh, S. Suresh: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001).

    Article  CAS  Google Scholar 

  6. N. Huber, W. Nix, H. Gao: Identification of elastic-plastic material parameters from pyramidal indentation of thin films. Proc. R. Soc. London, Ser. A 458, 1593 (2002).

    Article  CAS  Google Scholar 

  7. A. Atkins, D. Tabor: Plastic indentation in metals with cones. J. Mech. Phys. Solids 13, 149 (1965).

    Article  Google Scholar 

  8. D. Tabor: Hardness of Metals (Cambridge University Press, Cambridge, 1951).

    Google Scholar 

  9. M. Doerner, W. Nix: A method for interpreting the data from depth-sensing indentation. J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  10. W. Oliver, G. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  11. N. Huber, D. Munz, C. Tsakmakis: Determination of Young’s modulus by spherical indentation. J. Mater. Res. 12, 2459 (1997).

    Article  CAS  Google Scholar 

  12. H. Hertz: Über die Berührung fester elastischer Körper. J. Reine Angew. Math. 92, 156 (1882).

    Google Scholar 

  13. A. Love: Boussinesq’s problem for a rigid cone. Quart. J. Math. 10, 161 (1939).

    Article  Google Scholar 

  14. J. Harding, I. Sneddon: The elastic stresses produced by the indentation of the plane surface of a semi-infinite elastic solid by a rigid punch. Proc. Cambridge Philos. Soc. 43, 16 (1945).

    Article  Google Scholar 

  15. ISO 14577, Metallic materials—Instrumented indentation test for hardness and materials parameters—Part 1: Test method;—Part 2: Verification and calibration of the testing machine;—Part 3: Calibration of reference test pieces, October 2003.

  16. C. Ullner: Requirement of a robust method for the precise determination of the contact point in depth sensing hardness test. Measurement 27, 43 (2000).

    Article  Google Scholar 

  17. C. Ullner: Development of the instrumented indentation test. J. Metrology Soc. India 20, 43 (2005).

    Google Scholar 

  18. N.M. Jennett, A.S. Maxwell, K. Lawrence, L.N. McCartney, R. Hunt, J. Koskinen, T. Muukkonen, F. Rossi, J. Meneve, W. Wegener, N. Gibson, X. Zhihui, A.J. Bushby, S. Brookes, A. Cavaleiro, K. Herrmann, B. Bellaton, R. Consiglio, F. Augereau, O. Kolosov, D. Schneider, T. Chudoba European project INDICOAT SMT-CT98-2249, Final Report, Determination of Hardness and Modulus of Thin Films and Coatings by Nanoindentation, NPL Report MATC (A) 24 (2001).

  19. I.O. DIS 14577, Metallic materials—Instrumented indentation test for hardness and materials parameters—Part 4: Test method for metallic and non-metallic coatings, October 2005.

  20. E. Diegele, W. Jansohn, C. Tsakmakis: Finite deformation plasticity and viscoplasticity laws exhibiting nonlinear hardening rules Part I: Constitutive theory and numerical integration. Comp. Mech. 25, 1 (2000).

    Article  Google Scholar 

  21. E. Diegele, S. Hartmann, C. Tsakmakis: Finite deformation plasticity and viscoplasticity laws exhibiting nonlinear hardening rules Part II: Representative examples. Comp. Mech. 25, 13 (2000).

    Article  Google Scholar 

  22. K.D. Bouzakis, N. Michailidis, S. Hadjiyiannis, G. Skordaris, G. Erkens: The effect of specimen roughness and indenter tip geometry on the determination accuracy of thin hard coatings stress-strain laws by nanoindentation. Mater. Charact. 49, 149 (2003).

    Article  Google Scholar 

  23. N. Huber, C. Tsakmakis: Determination of constitutive properties from spherical indentation data using neural networks, Part I: The case of pure kinematic hardening in plasticity laws. J. Mech. Phys. Solids 47, 1569 (1999).

    Article  Google Scholar 

  24. N. Huber, C. Tsakmakis: Determination of constitutive properties from spherical indentation data using neural networks, Part II: Plasticity with nonlinear isotropic and kinematic hardening. J. Mech. Phys. Solids 47, 1589 (1999).

    Article  Google Scholar 

  25. M. Mayo, W. Nix: A micro-indentation study of superplasticity in Pb, Sn and Sn-38 wt% Pb. Acta Metall. 36, 2183 (1988).

    Article  CAS  Google Scholar 

  26. V. Raman, R. Berriche: An investigation of the creep process in tin and aluminium using a depth-sensing indentation technique. J. Mater. Res. 7, 627 (1992).

    Article  CAS  Google Scholar 

  27. N. Huber, E. Tioulioukovski: A new loading history for identification of viscoplastic properties by spherical indentation. J. Mater. Res. 19, 101 (2004).

    Article  CAS  Google Scholar 

  28. N. Huber, C. Tsakmakis: A neural network tool for identifying the material parameters of a finite deformation viscoplasticity model with static recovery. Comp. Meth. Appl. Mech. Eng. 191, 353 (2001).

    Article  Google Scholar 

  29. G. Yagawa, H. Okuda: Neural networks in computational mechanics. Modell. Simul. Mater. Sci. Eng. 3, 435 (1996).

    Google Scholar 

  30. Y.T. Cheng, C.M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R 44, 91 (2004).

    Article  Google Scholar 

  31. S. Haykin: Neural Networks: A Comprehensive Foundation (Macmillan, New York, 1994).

    Google Scholar 

  32. N. Huber Application of neural networks on nonlinear problems of mechanics. Habilitation Thesis, FZKA-Bericht 6504, Forschungszentrum Karlsruhe, Germany (2000, in German).

    Google Scholar 

  33. M. Riedmiller and H. Braun: A direct adaptive method for faster backpropagation learning: The RPROP algorithm, in Proceedings of the IEEE International Conference on Neural Networks, ICNN 93 (1993).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Huber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyulyukovskiy, E., Huber, N. Identification of viscoplastic material parameters from spherical indentation data: Part I. Neural networks. Journal of Materials Research 21, 664–676 (2006). https://doi.org/10.1557/jmr.2006.0076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0076

Navigation