Skip to main content
Log in

Dynamic electrical properties of polymer-carbon nanotube composites: Enhancement through covalent bonding

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Composite formation between carbon nanotubes and polymers can dramatically enhance the electrical and thermal properties of the combined materials. We have prepared a composite from polystyrene and multi-walled carbon nanotubes (MWCNT) and, unlike traditional techniques of composite formation, we chose to polymerize styrene from the surface of dithiocarboxylic ester-functionalized MWCNTs to fabricate a unique composite material, a new technique dubbed “gRAFT” polymerization. The thermal stability of the polymer matrix in the covalently linked MWCNT-polystyrene composite is significantly enhanced, as demonstrated by a 15 °C increase of the decomposition temperature than that of the noncovalently linked MWCNT-polystyrene blend. Thin films made from the composite with low MWCNT loadings (<0.9 wt%) are optically transparent, and we see no evidence of aggregation of nanotubes in the thin film or solution. The result from the conductivity measurement as a function of MWCNT loadings suggests two charge transport mechanisms: charge hopping in low MWCNT loadings (0.02–0.6 wt%) and ballistic quantum conduction in high loadings (0.6–0.9 wt%). The composite exhibits dramatically enhanced conductivity up to 33 S m−1 at a low MWCNT loading (0.9 wt%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. R. Saito, G. Dresselhaus, M.S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1999), p. 35.

    Google Scholar 

  3. M.S. Dresselhaus, G. Dresselhaus, J.C. Charlier, HernáE. ndez: Electronic, thermal and mechanical properties of carbon nanotubes. Philos. Trans. R. Soc. London, Ser. A 362, 2065 (2004).

    CAS  Google Scholar 

  4. M. Ouyang, J. Huang, C.M. Lieber: Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1018 (2002).

    CAS  Google Scholar 

  5. A. Ugawa, A.G. Rinzler, D.B. Tanner: Far infrared gaps in single-wall carbon nanotubes. Phys. Rev. B 60, R11305 (1999).

    CAS  Google Scholar 

  6. M.E. Itkis, S. Niyogi, M. Meng, M. Hamon, H. Hu, R.C. Haddon: Spectroscopic study of the Fermi level electronic structure of single walled carbon nanotubes. Nano Lett. 2, 155 (2002).

    CAS  Google Scholar 

  7. M. Ouyang, J.L. Huang, C.L. Cheung, C.M. Lieber: Energy gaps in “metallic” single-walled carbon nanotubes. Science 292, 702 (2001).

    CAS  Google Scholar 

  8. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley: Crystalline ropes of metallic carbon nanotubes. Science 273, 483 (1996).

    CAS  Google Scholar 

  9. J. Hone, M.C. Llaguno, N.M. Nemes, A.T. Johnson, J.E. Fischer, D.A. Walters, M.J. Casavant, J. Schmidt, R.E. Smalley: Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl. Phys. Lett. 77, 666 (2000).

    CAS  Google Scholar 

  10. L. Langer, L. Stockman, J.P. Heremans, V. Bayot, C.H. Olk, Van C. Haesendonck, Y. Bruynseraede, J.P. Issi: Electrical resistance of a carbon nanotube bundle. J. Mater. Res. 9, 927 (1994).

    CAS  Google Scholar 

  11. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678 (1996).

    CAS  Google Scholar 

  12. J. Hone, M. Whitney, C. Piskoti, A. Zettl: Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59, R2514 (1999).

    CAS  Google Scholar 

  13. W.A. de Heer, A. Châtelain, D. Ugarte: A carbon nanotube field-emission electron source. Science 270, 1179 (1995).

    Google Scholar 

  14. R. Blake, Y.K. Gun’ko, J. Coleman, M. Cadek, A. Fonseca, J.B. Nagy, W.J. Blau: A generic organometallic approach toward ultra-strong carbon nanotube polymer composites. J. Am. Chem. Soc. 126, 10226 (2004).

    CAS  Google Scholar 

  15. R.H. Baughman, A.A. Zakhidov, W.A. de Heer: Carbon nanotubes-the route toward applications. Science 297, 787 (2002).

    CAS  Google Scholar 

  16. S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer: Carbon nanotube quantum resistors. Science 280, 1744 (1998).

    CAS  Google Scholar 

  17. P.M. Ajayan, L.S. Schadler, C. Giannaris, A. Rubio: Single-walled carbon nanotube-polymer composites: Strength and weakness. Adv. Mater. 12, 750 (2000).

    CAS  Google Scholar 

  18. H. Murakami, T. Nomura, N. Nakashima: Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites. Chem. Phys. Lett. 378, 481 (2003).

    CAS  Google Scholar 

  19. T.G. Hedderman, S.M. Keogh, G. Chambers, H.J. Byrne: Solubilization of SWNTs with organic dye molecules. J. Phys. Chem. B 108, 18860 (2004).

    CAS  Google Scholar 

  20. J. Zhang, J.K. Lee, Y. Wu, R.W. Murray: Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes. Nano Lett. 3, 403 (2003).

    CAS  Google Scholar 

  21. Y. Lin, A.M. Rao, B. Sadanadan, E.A. Kenik, Y.P. Sun: Functionalizing multiple-walled carbon nanotubes with aminopolymers. J. Phys. Chem. B 106, 1294 (2002).

    CAS  Google Scholar 

  22. H. Kong, C. Gao, D. Yan: Controlled functionalization of multi-walled carbon nanotubes by in situ atom transfer radical polymerization. J. Am. Chem. Soc. 126, 412 (2004).

    CAS  Google Scholar 

  23. G. Viswanathan, N. Chakrapani, H. Yang, B. Wei, H. Chung, K. Cho, C.Y. Ryu, P.M. Ajayan: Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J. Am. Chem. Soc. 125, 9258 (2003).

    CAS  Google Scholar 

  24. S. Qin, D. Qin, W.T. Ford, D.E. Resasco, J.E. Herrera: Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules 37, 752 (2004).

    CAS  Google Scholar 

  25. R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N. Kam Wong Shi, M. Shim, Y. Li, W. Kim, P.J. Utz, H. Dai: Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA 100, 4984 (2003).

    CAS  Google Scholar 

  26. B.R. Azamian, K.S. Coleman, J.J. Davis, N. Hanson, M.L.H. Green: Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chem. Commun. 4, 366 (2002).

    Google Scholar 

  27. S. Banerjee, S. Stanislaus Wong: In situ quantum dot growth on multi-walled carbon nanotubes. J. Am. Chem. Soc. 125, 10342 (2003).

    CAS  Google Scholar 

  28. S. Chaudhary, J.H. Kim, K.V. Singh, M. Ozkan: Fluorescence microscopy visualization of single-walled carbon nanotubes using semiconductor nanocrystals. Nano Lett. 4, 2415 (2004).

    CAS  Google Scholar 

  29. M.S. Strano, C.A. Dyke, M.L. Usrey, P.W. Barone, M.J. Allen, H. Shan, C. Kittrell, R.H. Hauge, J.M. Tour, R.E. Smalley: Electronic structure control of single-wall carbon nanotube functionalization. Science 301, 1519 (2003).

    CAS  Google Scholar 

  30. S.A. Curran, P.M. Ajayan, W.J. Blau, D.L. Carroll, J.N. Coleman, A.B. Dalton, A.P. Davey, A. Drury, B. McCarthy, S. Maier, A. Strevens: A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: A novel material for molecular optoelectronics. Adv. Mater. 10, 1091 (1998).

    CAS  Google Scholar 

  31. P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth: Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265, 1212 (1994).

    CAS  Google Scholar 

  32. Y. Lin, B. Zhou, K.A.S. Fernado, P. Liu, L.F. Allard, Y.P. Sun: Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer. Macromolecules 36, 7199 (2003).

    CAS  Google Scholar 

  33. A.B. Kaiser: Electronic transport properties of conducting polymers and carbon nanotubes. Rep. Prog. Phys. 64, 1 (2001).

    CAS  Google Scholar 

  34. B. Kim, J. Lee, I. Yu: Electrical properties of single-wall carbon nanotube and epoxy composites. J. Appl. Phys. 94, 6724 (2003).

    CAS  Google Scholar 

  35. C.A. Grimes, C. Mungle, D. Kouzoudis, S. Fang, P.C. Eklund: The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chem. Phys. Lett. 319, 460 (2000).

    CAS  Google Scholar 

  36. J.N. Coleman, S.A. Curran, A.B. Dalton, A.P. Davey, B. McCarthy, W.J. Blau, R.C. Barklie: Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite. Phys. Rev. B 58, R7492 (1998).

    CAS  Google Scholar 

  37. A. Allaoui, S. Bai, H.M. Cheng, J.B. Bai: Mechanical and electrical properties of a MWNT/epoxy composite. Compos. Sci. Technol. 62, 1993 (2002).

    CAS  Google Scholar 

  38. S.C. Farmer, T.E. Patten: (Thiocarbonyl-a-thio)carboxylic acid derivatives as transfer agents in reversible addition-fragmentation chain-transfer polymerizations. J. Polym. Sci. Part A: Polym. Chem. 40, 555 (2002).

    CAS  Google Scholar 

  39. T.W. Ebbesen, P.M. Ajayan: Large-scale synthesis of carbon nanotubes. Nature 358, 220 (1992).

    CAS  Google Scholar 

  40. S.S. Wong, E. Joselevich, A.T. Woolley, C.L. Cheung, C.M. Lieber: Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394, 52 (1998).

    CAS  Google Scholar 

  41. B.C. Satishkumar, A. Govindaraj, J. Mofokeng, G.N. Subbanna, C.N.R. Rao: Novel experiments with carbon nanotubes: opening, filling, closing and functionalizing nanotubes. J. Phys. B: At. Mol. Opt. Phys. 29, 4925 (1996).

    CAS  Google Scholar 

  42. N. Zhang, J. Xie, V.K. Varadan: Functionalization of carbon nanotubes by potassium permanganate assisted with phase transfer catalyst. Smart Mater. Struct. 11, 962 (2002).

    CAS  Google Scholar 

  43. A. Sudalai, S. Kanagasabapathy, B.S. Benicewicz: Phosphorus pentasulfide: A mild and versatile catalyst/reagent for the preparation of dithiocarboxylic esters. Org. Lett. 2, 3213 (2000).

    CAS  Google Scholar 

  44. J. Fourier, G. Boiteax, G. Seytre, G. Marichy: Percolation network of polypyrrole in conducting polymer composites. Synth. Met. 84, 839 (1997).

    Google Scholar 

  45. O. Meincke, D. Kaempfer, H. Weickmann, C. Friedrich, M. Vathauer, H. Warth: Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymers 45, 739 (2004).

    CAS  Google Scholar 

  46. P. Pötschke, A.R. Bhattacharyya, A. Janke: Melt mixing of polycarbonate with multi-walled carbon nanotubes: microscopic studies on the state of dispersion. Eur. Polym. J. 40, 137 (2003).

    Google Scholar 

  47. M. Foygel, R.D. Morris, D. Anez, S. French, V.L. Sobolev: Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity. Phys. Rev. B 71, 104201 (2005).

    Google Scholar 

  48. F. Carmona, C. Mouney: Temperature-dependent resistivity and conduction mechanism in carbon particle-filled polymers. J. Mater. Sci. 27, 1322 (1992).

    CAS  Google Scholar 

  49. L. Langer, V. Bayot, E. Grivei, J.P. Issi, J.P. Heremans, C.H. Olk, L. Stockman, C. van Haesendonck, Y. Bruynseraede: Quantum transport in a multi-walled carbon nanotube. Phys. Rev. Lett. 76, 479 (1996).

    CAS  Google Scholar 

  50. L. Chico, L.X. Benedict, S.G. Louie, M.L. Cohen: Quantum conductance of carbon nanotubes with defects. Phys. Rev. B 54, 2600 (1996).

    CAS  Google Scholar 

  51. S. Sanvito, Y.K. Kwon, D. Tomanek, C.J. Lámbert: Fractional quantum conductance in carbon nanotubes. Phys. Rev. Lett. 84, 1974 (2000).

    CAS  Google Scholar 

  52. N. Levi, R. Czerw, S. Xing, P. Iyer, D.L. Carroll: Properties of polyvinylidene difluoride-carbon nanotube blends. Nano Lett. 4, 1267 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seamus A. Curran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curran, S.A., Zhang, D., Wondmagegn, W.T. et al. Dynamic electrical properties of polymer-carbon nanotube composites: Enhancement through covalent bonding. Journal of Materials Research 21, 1071–1077 (2006). https://doi.org/10.1557/jmr.2006.0129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0129

Navigation