Skip to main content
Log in

Processing of yttrium-doped barium zirconate for high proton conductivity

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The factors governing the transport properties of yttrium-doped barium zirconate (BYZ) have been explored, with the aim of attaining reproducible proton conductivity in well-densified samples. It was found that a small initial particle size (50–100 nm) and high-temperature sintering (1600 °C) in the presence of excess barium were essential. By this procedure, BaZr0.8Y0.2O3−δ with 93% to 99% theoretical density and total (bulk plus grain boundary) conductivity of 7.9 × 10−3 S/cm at 600 °C [as measured by alternating current (ac) impedance spectroscopy under humidified nitrogen] could be reliably prepared. Samples sintered in the absence of excess barium displayed yttria-like precipitates and a bulk conductivity that was reduced by more than 2 orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ito, M. Iijima, K. Kimura, and S. Iguchi: New intermediate temperature fuel cell with ultra-thin proton conductor electrolyte. J. Power Sources 152, 200 (2005).

    Article  CAS  Google Scholar 

  2. K.D. Kreuer: Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics 125, 285 (1999).

    Article  CAS  Google Scholar 

  3. K.H. Ryu and S.M. Haile: Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions. Solid State Ionics 125, 355 (1999).

    Article  CAS  Google Scholar 

  4. H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, and H. Suzuki: Protonic conduction in calcium, strontium and barium zirconates. Solid State Ionics 61, 65 (1993).

    Article  CAS  Google Scholar 

  5. A. Manthiram, J.F. Kuo, and J.B. Goodenough: Characterization of oxygen-deficient perovskites as oxide-ion electrolytes. Solid State Ionics 62, 225 (1993).

    Article  CAS  Google Scholar 

  6. R.C.T Slade, S.D. Flint, and N. Singh: Investigation of protonic conduction in Yb- and Y-doped barium zirconates. Solid State Ionics 82, 135 (1995).

    Article  CAS  Google Scholar 

  7. H.G. Bohn and T. Schober: Electrical conductivity of the high-temperature proton conductor BaZr0.9Y0.1O2.95. J. Am. Ceram. Soc. 83, 768 (2000).

    Article  CAS  Google Scholar 

  8. K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara: Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics 138, 91 (2000).

    Article  CAS  Google Scholar 

  9. V.P. Gorelov, V.B. Balakireva, Y.N. Kleshchev, and V.P. Brusentsov: Preparation and electrical conductivity of BaZr1−xRxO3−α(R = Sc, Y, Ho, Dy, Gd, In). Inorg. Mater. 37, 535 (2001).

    Article  CAS  Google Scholar 

  10. M. Laidoudi, I. Abu Talib, and R. Omar: Investigation of the bulk conductivity of BaZr0.95M0.05O3 (M = Al, Er, Ho, Tm, Yb and Y) under wet N2. J. Phys. D Appl. Phys. 35, 397 (2002).

    Article  CAS  Google Scholar 

  11. K.D. Kreuer: Proton-conducting oxides. Ann. Rev. Mater. Res. 33, 333 (2003).

    Article  CAS  Google Scholar 

  12. F.M.M Snijkers, A. Buekenhoudt, J. Cooymans, and J.J. Luyten: Proton conductivity and phase composition in BaZr0.9Y0.1O3-Delta. Scripta Mater. 50, 655 (2004).

    Article  CAS  Google Scholar 

  13. W.S. Wang and A.V. Virkar: Ionic and electron-hole conduction in BaZr0.93Y0.07O3−δ by 4-probe D.C. measurements. J. Power Sources 142, 1 (2005).

    Article  CAS  Google Scholar 

  14. C.D. Savaniu, J. Canales-Vazquez, and J.T.S Irvine: Investigation of proton conducting BaZr0.9Y0.1O2.95: BaCe0.9Y0.1O2.95 core-shell structures. J. Mater. Chem. 15, 598 (2005).

    Article  CAS  Google Scholar 

  15. F. Iguchi, T. Yamada, N. Sata, T. Tsurui, and H. Yugami: The influence of grain structures on the electrical conductivity of a BaZr0.95Y0.05O3 proton conductor. Solid State Ionics 177, 2281 (2006).

    Article  CAS  Google Scholar 

  16. L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas, and G.J. Exarhos: Glycine nitrate combustion synthesis of oxide ceramic powders. Mater. Lett. 10, 6 (1990).

    Article  CAS  Google Scholar 

  17. J.T. Armstrong: CITZAF: A package of correction programs for the quantitative electron microbeam x-ray analysis of thick polished materials, thin films, and particles. Microbeam Anal. 4, 177 (1995).

    CAS  Google Scholar 

  18. J.R. MacDonald and W.B. Johnson: Impedance Spectroscopy—Emphasizing Solid Materials and Systems, edited by J.R. MacDonald (Wiley and Sons, New York, 1987), pp. 191–238.

  19. K.D. Kreuer, S. Adams, W. Munch, A. Fuchs, U. Klock, and J. Maier: Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ionics 145, 295 (2001).

    Article  CAS  Google Scholar 

  20. A. Kojima, K. Tanaka, Y. Oyama, T. Higuchi, and S. Yamaguchi: The 31st Symposium on Solid State Ionics in Japan, Niigata, Japan, Nov. 28–30, 2005 (The Mining and Materials Processing Institute of Japan, 2006), p. 157.

    Google Scholar 

  21. P. Babilo and S.M. Haile: Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO. J. Am. Ceram. Soc. 88, 2362 (2005).

    Article  CAS  Google Scholar 

  22. A. Magrez and T. Schober: Preparation, sintering, and water incorporation of proton conducting Ba0.99Zr0.8Y0.2O3−δ: Comparison between three different synthesis techniques. Solid State Ionics 175, 585 (2004).

    Article  CAS  Google Scholar 

  23. G. Baldinozzi, J.F. Berar, and G. Calvarin: Rietveld refinement of two-phase Zr-doped Y2O3. Mater. Sci. Forum 278–2, 680 (1998).

    Article  Google Scholar 

  24. D. Shima and S.M. Haile: The influence of cation non-stoichiometry on the properties of undoped and gadolinia-doped barium cerate. Solid State Ionics 97, 443 (1997).

    Article  CAS  Google Scholar 

  25. J. Wu, L.P. Li, W.T.P Espinosa, and S.M. Haile: Defect chemistry and transport properties of BaxCe0.85M0.15O3−δ. J. Mater. Res. 19, 2366 (2004).

    Article  CAS  Google Scholar 

  26. J. Wu, S.M. Webb, S. Brennan, and S.M. Haile: Dopant site selectivity in BaCe0.85M0.15O3−δ by extended x-ray absorption fine structure. J. Appl. Phys. 97, 054101 (2005).

    Article  Google Scholar 

  27. S.M. Haile, D.L. West, and J. Campbell: The role of microstructure and processing on the proton conducting properties of gadolinium-doped barium cerate. J. Mater. Res. 13, 1576 (1998).

    Article  CAS  Google Scholar 

  28. X. Guo and R. Waser: Space charge concept for acceptor-doped zirconia and ceria and experimental evidences. Solid State Ionics 173, 63 (2004).

    Article  CAS  Google Scholar 

  29. P. Babilo and S.M. Haile (under preparation).

  30. B.C.H Steele: Oxygen ion conductors and their technological applications. Mater. Sci. Eng., B 13, 79 (1992).

    Article  Google Scholar 

  31. S.M. Haile: Fuel cell materials and components. Acta Mater. 51, 5981 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sossina M. Haile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babilo, P., Uda, T. & Haile, S.M. Processing of yttrium-doped barium zirconate for high proton conductivity. Journal of Materials Research 22, 1322–1330 (2007). https://doi.org/10.1557/jmr.2007.0163

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0163

Navigation