Skip to main content
Log in

Mechanical behavior assessment of sucrose using nanoindentation

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An experimental study of the elastic and plastic properties of sucrose single crystals, which can be considered to be a model material for both pharmaceutical excipients and explosives, has been carried out using nanoindentation. Instrumented indentation was used to characterize the properties of both habit and cleavage planes on the (100) and (001) orientations; the elastic modulus on the (100) is 38 GPa, while the modulus on the (001) is 33 GPa. The hardness of sucrose is approximately 1.5 GPa. Nanoindentation enables assessment of the onset of plastic deformation on cleaved surfaces, and a maximum shear stress of 1 GPa can be supported prior to plastic deformation. The deformation in this material is crystallographically dependent, with pileup around residual indentation impressions showing evidence of preferential slip system activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
TABLE I.
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. J.E. Field, M.M. Chaudhri, G.M. Swallowe S.J.P. Palmer: Report No. Office of Naval Research Interim Report, DAJA37-81-C0081 1981

  2. D.B. Sheen, J.N. Sherwood, H.G. Gallagher, A.H. Littlejohn A. Pearson: Report No. Office of Naval Research Final Report N00014-87-J-1173 1993

  3. T. Kobayashi S. Isoda: Lattice images and molecular images of organic materials. J. Mater. Chem. 3, 1 1993

    Article  CAS  Google Scholar 

  4. J.M. Thomas J.O. Williams: Dislocations and the reactivity of organic solids. Prog. Solid State Chem. 6, 119 1971

    Article  CAS  Google Scholar 

  5. M.P. Mullarney, B.C. Hancock, G.T. Carlson, D.D. Ladipo B.A. Langdon: The powder flow and compact mechanical properties of sucrose and three high-intensity sweeteners in chewable tablets. Int. J. Pharm. 257, 227 2003

    Article  CAS  Google Scholar 

  6. D.E. Hooks K.J. Ramos: Initiation mechanisms in Single Crystal Explosives: Dislocations, Elastic Limits, and Initiation Thresholds 13th International Detonation Symposium, Norfolk, VA 2006 455

  7. R.W. Armstrong: Dislocation-assisted initiation of energetic materials. Central Eur. J. Energ. Mater. 2, 55 2005

    Google Scholar 

  8. R.W. Armstrong, C.S. Coffey W.L. Elban: Adiabatic heating at a dislocation pile-up avalanche. Acta Metall. 30, 2111 1982

    Article  CAS  Google Scholar 

  9. S.M. Walley, J.E. Field M.W. Greenaway: Crystal sensitivities of energetic materials. Mater. Sci. Technol. 22, 402 2006

    Article  CAS  Google Scholar 

  10. W.C. Duncan-Hewitt G.C. Weatherly: Evaluating the hardness, Young’s modulus and fracture toughness of some pharmaceutical crystals using microindentation techniques. J. Mater. Sci. Lett. 8, 1350 1989

    Article  CAS  Google Scholar 

  11. P.J. Halfpenny, K.J. Roberts J.N. Sherwood: Dislocations in energetic materials; Part 3. Etching and microhardness studies of pentaerythritol tetramitrate and cyclotrimethylenetrintitramine. J. Mater. Sci. 19, 1629 1984

    Article  CAS  Google Scholar 

  12. X. Liao T.S. Wiedmann: Characterization of pharmaceutical solids by scanning-probe microscopy. J. Pharm. Sci. 93, 2250 2004

    Article  CAS  Google Scholar 

  13. X. Liao T.S. Wiedmann: Measurement of process-dependent material properties of pharmaceutical solids by nanoindentation. J. Pharm. Sci. 94, 79 2004

    Article  CAS  Google Scholar 

  14. W.C. Duncan-Hewitt, D.L. Mount A. Yu: Hardness anisotropy of acetaminophen crystals. Pharm. Res. 11, 616 1994

    Article  CAS  Google Scholar 

  15. S. Finnie, K.V.R. Prasad, D.B. Sheen J.N. Sherwood: Microhardness and dislocation identification studies on paracetamol single crystals. Pharm. Res. 18, 674 2001

    Article  CAS  Google Scholar 

  16. C.A. Brookes, J.B. O’Neill B.A.W. Redfern: Anisotropy in the hardness of single crystals. Proc. R. Soc. London A 332, 73 1971

    Google Scholar 

  17. F.W. Daniels C.G. Dunn: The effect of orientation on knoop hardness of single crystals of zinc and silicon ferrite. Trans. ASM 41, 419 1949

    Google Scholar 

  18. S. Amelinckx: The direct observation of dislocation nets in rock salt single crystals. Philos. Mag. 1, 269 1956

    Article  CAS  Google Scholar 

  19. Y. Gaillard, C. Tromas J. Woirgard: Study of the dislocation structure involved in a nanoindentation test by atomic force microscopy and controlled chemical etching. Acta Mater. 51, 1059 2003

    Article  CAS  Google Scholar 

  20. Y. Gaillard, C. Tromas J. Woirgard: Quantitative analysis of dislocation pile-ups nucleated during nanoindentation in MgO. Acta Mater. 54, 1409 2006

    Article  CAS  Google Scholar 

  21. J. Sharma, C.S. Coffey, R.W. Armstrong, W.L. Elban S.M. Hoover: Sub-molecular fracture steps in shock-shattered RDX crystals and follow-on nano-indentation evaluation of early stage plasticity in Shock Compression of Condensed Matter, edited by M.D. Furnish, N.N. Thadhani, and Y. Horie (American Institute of Physics, 2001) 837

    Google Scholar 

  22. C.A. Beevers, T.R.R. McDonald, J.H. Robertson F. Stern: The crystal structure of sucrose. Acta Crystallogr. 5, 689 1952

    Article  CAS  Google Scholar 

  23. G.M. Brown H. Levy: Further refinement of the structure of sucrose based on neutron-diffraction data. Acta Crystallogr. B29, 790 1973

    Article  Google Scholar 

  24. W.C. Duncan-Hewitt G.C. Weatherly: Modeling the uniaxial compaction of pharmaceutical powders using the mechanical properties of single crystals. II: Brittle materials. J. Pharm. Sci. 79, 273 1990

    Article  CAS  Google Scholar 

  25. J.C.F. Millett N.K. Bourne: The shock Hugoniot of a plastic bonded explosive and inert stimulants. J. Phys. D: Appl. Phys. 37, 2613 2004

    Article  CAS  Google Scholar 

  26. S.A. Sheffield, R.L. Gustavsen R.R. Alcon: Porous HMX initiation studies—sugar as an inert stimulant in Shock Compression of Condensed Matter, edited by S.C. Schmidt, D.P. Dandekar, and J.W. Forbes American Institute of Physics, Woodbury, NY 1997 575

    Google Scholar 

  27. S.N. Heavens J.E. Field: The ignition of a thin layer of explosives by impact. Proc. R. Soc. London A 338, 77 1974

    Article  CAS  Google Scholar 

  28. J.J. Dick J.P. Ritchie: Molecular mechanics modeling of shear and the crystal orientation dependence of the elastic precursor shock strength in pentaerythritol tetranitrate. J. Appl. Phys. 76, 2726 1994

    Article  CAS  Google Scholar 

  29. Z.A. Dreger, Y.A. Gruzdkov, Y.M. Gupta J.J. Dick: Shock wave induced decomposition chemistry of pentaerythritol tetranitrate single crystals: Time-resolved emission spectroscopy. J. Phys. Chem. B 106, 247 2002

    Article  CAS  Google Scholar 

  30. D.F. Bahr, D.E. Kramer W.W. Gerberich: Non-linear deformation mechanism during nanoindentation. Acta Mater. 46, 3605 1998

    Article  CAS  Google Scholar 

  31. W.C. Oliver G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992

    Article  CAS  Google Scholar 

  32. K.L. Johnson: Contact Mechanics Cambridge University Press, New York 1985 93

    Book  Google Scholar 

  33. S.A.S. Asif J.B. Pethica: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A 76, 1105 1997

    Article  CAS  Google Scholar 

  34. A.B. Mann J.B. Pethica: The role of atomic size asperities in the mechanical deformation of nanocontacts. Appl. Phys. Lett. 69, 907 1996

    Article  CAS  Google Scholar 

  35. C.A. Schuh, J.K. Mason A.C. Lund: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617 2005

    Article  CAS  Google Scholar 

  36. D.F. Bahr G. Vasquez: Effect of solid solution impurities on dislocation nucleation during nanoindentation. J. Mater. Res. 20, 1947 2005

    Article  CAS  Google Scholar 

  37. K.A. Nibur, D.F. Bahr B.P. Somerday: Hydrogen effects on dislocation activity in austenitic stainless steel. Acta Mater. 54, 2677 2006

    Article  CAS  Google Scholar 

  38. W. Connick F.G.J. May: Dislocation etching of cyclotrimethylene trinitramine crystals. J. Cryst. Growth 5, 65 1969

    Article  CAS  Google Scholar 

  39. H.G. Gallager, P.J. Halfpenny J.C. Miller: Dislocation slip systems in pentaerythritol tetranitrate (PETN) and cyclotrimethylene trinitramine (RDX). Philos. Trans. R. Soc. London Ser. A 339, 293 1992

    Article  Google Scholar 

  40. P.J. Halfpenny, K.J. Roberts J.N. Sherwood: Dislocations in energetic materials; Dislocation characterization and post-growth motion in single crystals of cyclotrimethylene trinitramine. Philos. Mag. A 53, 531 1986

    Article  CAS  Google Scholar 

  41. D.F. Bahr W.W. Gerberich: Plastic zone and pileup around large indentations. Metall. Mater. Trans. A 27A, 3793 1996

    Article  CAS  Google Scholar 

  42. K.A. Nibur D.F. Bahr: Identifying slip systems around indentations in FCC metals. Scripta Mater. 49, 1055 2003

    Article  CAS  Google Scholar 

  43. N.A. Stelmashenko, M.G. Walls, L.M. Brown Y.V. Milman: Microindentation on W and Mo oriented single crystals: An STM study. Acta Metall. Mater. 41, 2855 1993

    Article  CAS  Google Scholar 

  44. W.C. Duncan-Hewitt G.C. Weatherly: Evaluating the fracture toughness of sucrose crystals using microindentation techniques. Pharm. Res. 5, 373 1989

    Article  Google Scholar 

  45. W.C. Duncan-Hewitt: The use of microindentation techniques to assess the ability of pharmaceutical crystals to form strong compacts. Ph.D. Thesis, University of Toronto, Toronto, Canada 1988

    Google Scholar 

  46. T.F. Page, W.C. Oliver C.J. McHargue: The deformation behavior of ceramic crystals subjected to very low load (nano)indentation. J. Mater. Res. 7, 450 1992

    Article  CAS  Google Scholar 

  47. D. Tabor: The Hardness of Metals Oxford University Press, Oxford, England 1951

    Google Scholar 

  48. A.J. Bushby D.J. Dunstan: Plasticity size effects in nanoindentation. J. Mater. Res. 19, 137 2004

    Article  CAS  Google Scholar 

  49. J.B. Swadner, B. Taljat G.M. Pharr: Measurement of residual stress by load and depth-sensing indentation with spherical indenters. J. Mater. Res. 16, 2091 2001

    Article  Google Scholar 

  50. J.M. Thomas J.O. Williams: Lattice imperfections in organic solids. Faraday Soc. Trans. 63, 1922 1967

    Article  CAS  Google Scholar 

  51. P.R. Perrier S.R. Byrn: Influence of crystal packing on the solid-state desolvation of purine and pyrimidine hydrates: Loss of water of crystallization from thymine monohydrate, cytosine monohydrate, 5-nittrouracil monohydrate, and 2′-Deoxyadenosine Monohydrate. J. Org. Chem. 47, 4671 1982

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank Los Alamos National Laboratories for financial support of this work, and Dr. Daniel E. Hooks and Dr. Stephen A. Sheffield for helpful discussions regarding molecular organics. The contract was supported by the National Nuclear Security Administration Science Campaign Two.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.F. Bahr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos, K., Bahr, D. Mechanical behavior assessment of sucrose using nanoindentation. Journal of Materials Research 22, 2037–2045 (2007). https://doi.org/10.1557/jmr.2007.0249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0249

Navigation