Skip to main content
Log in

Phase development during mixed-oxide processing of a [Na0.5K0.5NbO3]1−x–[LiTaO3]x powder

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Powders of the solid lead-free piezoelectric ceramic solution [Na0.5K0.5NbO3]1−x–[LiTaO3]x, x = 0.06, were produced using a mixed-oxide process. Phase analysis indicated the formation of an orthorhombic solid solution at 800 °C, which coexisted with intermediate binary niobate and tantalate phases. A tetragonal main-phase solid solution was formed at ⩾950 °C, along with minor quantities of a tungsten bronze phase. Addition of 3 wt% excess alkali carbonates to the starting powders allowed the orthorhombic solid solution to be retained to 1100 °C and prevented formation of the secondary tungsten bronze phase. Elemental chemical analysis confirmed changes in alkali oxide composition, consistent with volatilization losses, particularly of potassium and lithium oxides. Phase stability near the reported morphotropic phase boundary is shown to be sensitive to alkali oxide content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
TABLE I.
FIG. 3
FIG. 4
TABLE II.
TABLE III.
TABLE IV.
FIG. 5
FIG. 6
TABLE V.

Similar content being viewed by others

References

  1. European Council Directive 2002/95/EC of the European Parliament and Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Off. J. Eur. Union L37, 19 2003

  2. IEEE IEEE Standard on Piezoelectricity, ANSI/IEEE Standard No. 176 IEEE New York 1987

    Google Scholar 

  3. T. Takenaka H. Nagata: Current status and prospects of lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 25, 2693 2005

    Article  CAS  Google Scholar 

  4. H. Yilmaz, S. Trolier-McKinstry G.L. Messing: (Reactive) Templated grain growth of textured sodium bismuth titanate (Na1/2Bi1/2TiO3–BaTiO3) ceramics—I. Processing. J. Electroceram. 11, 207 2003

    Article  CAS  Google Scholar 

  5. H. Yilmaz, S. Trolier-McKinstry G.L. Messing: (Reactive) Templated grain growth of textured sodium bismuth titanate (Na1/2Bi1/2TiO3–BaTiO3) ceramics—II. Dielectric and piezoelectric properties. J. Electroceram. 11, 217 2003

    Article  CAS  Google Scholar 

  6. L. Egerton D.M. Dillon: Piezoelectric and dielectric properties of ceramics in the system potassium–sodium niobate. J. Am. Ceram. Soc. 42(9), 438 1959

    Article  Google Scholar 

  7. L. Egerton R.E. Jaeger: Hot pressing of potassium–sodium niobates. J. Am. Ceram. Soc. 45(5), 209 1962

    Google Scholar 

  8. G.H. Haertling: Properties of hot-pressed ferroelectric alkali niobate ceramics. J. Am. Ceram. Soc. 50(6), 329 1967

    Article  Google Scholar 

  9. B. Jaffe, W.R. Cook H. Jaffe: (eds.) Piezoelectric ceramics in Non-metallic Solids Academic Press London 1971 Vol. 3

  10. Y. Guo, K. Kakimoto H. Ohsato: (Na0.5K0.5)NbO3–LiTaO3 lead-free piezoelectric ceramics. Mater. Lett. 59(2-3), 241 2005

    Article  CAS  Google Scholar 

  11. Y. Guo, K. Kakimoto H. Ohsato: Phase transitional behaviour and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121 2004

    Article  CAS  Google Scholar 

  12. Y. Saito, H. Takao, I. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya M. Nakamura: Lead-free piezoceramics. Nature 432, 84 2004

    Article  CAS  Google Scholar 

  13. Y. Saito H. Takao: High performance lead-free piezoelectric ceramics in the (K,Na)NbO3–LiTaO3 solid solution system. Ferroelectrics 338, 17 2006

    Article  CAS  Google Scholar 

  14. R. Zuo, J. Rödel, R. Chen L. Li: Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 89(6), 2010 2006

    Article  Google Scholar 

  15. E. Hollenstein, M. Davis, D. Damjanovic N. Setter: Piezoelectric properties of Li- and Ta-modified (Na0.5K0.5)NbO3 ceramics. Appl. Phys. Lett. 87(182905), 1 2005

    Google Scholar 

  16. J-F. Li, K. Wang, B-P. Zhang L-M. Zhang: Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 89(2), 706 2006

    Article  Google Scholar 

  17. R. Wang, R-J. Xie, K. Hanada, K. Matsusaki, H. Bando M. Itoh: Phase diagram and enhanced piezoelectricity in the strontium titanate doped potassium–sodium niobate solid solution. Phys. Status Solidi 202(6), R57 2005

    Article  Google Scholar 

  18. B-P. Zhang, J-F. Li, K. Wang H. Zhang: Compositional dependence of piezoelectric properties in NaxK1−xNbO3 lead-free ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 89(5), 1605 2006

    Article  Google Scholar 

  19. G-Z. Zang, J-F. Wang, H-C. Chen, W-B. Su, C-M. Wang, P. Qi, B-Q. Ming, J. Du, L-M. Zheng, S. Zhang T.R. Shrout: Perovskite (Na0.5K0.5)1−x(LiSb)xNb1−xO3 lead-free piezoceramics. Appl. Phys. Lett. 88, 212908 2006

    Article  Google Scholar 

  20. JCPDS No. 00-033-1270. International Center for Diffraction Data Newton Square PA 1980

  21. JCPDS No. 00-032-0822. International Center for Diffraction Data Newton Square PA 1981

  22. JCPDS No. 00-020-0631. International Center for Diffraction Data Newton Square PA 1968

  23. JCPDS No. 00-029-0836. International Center for Diffraction Data Newton Square PA 1977

  24. M. Ahtee A.M. Glazer: Lattice parameters and tilted octahedra in sodium–potassium niobate solid solutions. Acta Crystallogr. A32, 434 1976

    Article  CAS  Google Scholar 

  25. JCPDS No. 00-034-0122. International Center for Diffraction Data Newton Square PA 1982

  26. JCPDS No. 00-052-0157. International Center for Diffraction Data Newton Square PA 1977

  27. P. Bomlai, W. Wichianrat, S. Muensit S.J. Milne: Effect of calcination conditions and excess alkali carbonate on the phase formation and particle morphology of Na0.5K0.5NbO3 powders. J. Am. Ceram. Soc. 90(5), 1650 2007

    Article  Google Scholar 

  28. JCPDS No. 01-071-0945. International Center for Diffraction Data Newton Square PA 1997

  29. JCPDS No. 00-016-0459. International Center for Diffraction Data Newton Square PA 1963

  30. A.D. Pelton, C.W. Bale P.L. Lin: Calculation of phase diagrams and thermodynamic properties of 14 additive and reciprocal ternary systems containing Li2CO3, Na2CO3, K2CO3, Li2SO4, Na2SO4, K2SO4, LiOH, NaOH, and KOH. Can. J. Chem. 62, 457 1984

    Article  CAS  Google Scholar 

  31. L.F. Volkova: Figure 1015 in Phase Diagrams for Ceramists edited by E.M. Levin, C.R. Robbins, and H.F. McMurdie The American Ceramic Society Westerville, OH 1964

  32. A.I. Kingon J.B. Clark: Sintering of PZT ceramics: I—Atmosphere control. J. Am. Ceram. Soc. 66(4), 253 1983

    Article  Google Scholar 

  33. A.I. Kingon J.B. Clark: Sintering of PZT ceramics: II—Effect of PbO content on densification kinetics. J. Am. Ceram. Soc. 66(4), 256 1983

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the Engineering and Physical Sciences Research Council (EPSRC) for a studentship award. Appreciation is expressed to P. Bomlai, Prince Songkla University, Thailand, and to colleagues at the University of Leeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.J. Milne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skidmore, T., Milne, S. Phase development during mixed-oxide processing of a [Na0.5K0.5NbO3]1−x–[LiTaO3]x powder. Journal of Materials Research 22, 2265–2272 (2007). https://doi.org/10.1557/jmr.2007.0281

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0281

Navigation