Skip to main content
Log in

Morphology of Si nanocrystallites embedded in SiO2 matrix

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The nanostructure of Six(SiO2)1–x films deposited on quartz substrate, where x varies from 0 to 1, was determined by high-resolution transmission electron microscopy in the sample regions with x ≈ 0.1, 0.2, 0.5, and 0.75. In the Si0.5(SiO2)0.5 region, the formation of a Si nanocrystallite network was established. At high concentrations of Si nanocrystallites, nanotwins and stacking faults occurred in the crystallites. Large Si crystallites appeared at x ⩾ 0.5 in the quartz substrate under the interface, while the film presented nanopores over the interface. The mechanisms for the formation of the nanocrystallites were discussed and correlated with the film properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. S. Huang, S. Oda: Charge storage in nitrided nanocrystalline silicon dots. Appl. Phys. Lett. 87, 173107 2005

    Article  Google Scholar 

  2. R.J. Walters, G.I. Bourianoff, H.A. Atwater: Field-effect electroluminescence in silicon nanocrystals. Nat. Mater. 4, 143 2005

    Article  CAS  Google Scholar 

  3. S. Hayashi, K. Yamamoto: Optical properties of Si-rich SiO2 films in relation with embedded Si mesoscopic particles. J. Lumin. 70, 352 1996

    Article  CAS  Google Scholar 

  4. L. You, C.L. Heng, S.Y. Ma, Z.C. Ma, W.H. Zong, Z. Wu, G.G. Qin: Precipitation and crystallization of nanometer Si clusters in annealed Si-rich SiO2 films. J. Cryst. Growth 212, 109 2000

    Article  CAS  Google Scholar 

  5. M. Dovrat, Y. Oppenheim, J. Jedrzejewski, I. Balberg, A. Sa’ar: Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy. Phys. Rev. B 69, 155311 2004

    Article  Google Scholar 

  6. S. Takeoka, M. Fujii, S. Hayashi: Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime. Phys. Rev. B 62, 16820 2000

    Article  CAS  Google Scholar 

  7. F.N. Timofeev, A. Aydinli, R. Ellialtioglu, K. Türkoglu, M. Güre, V.N. Mikhailov, O.A. Lavrova: Visible photoluminescence from SiOx films grown by low temperature plasma enhanced chemical vapor deposition. Solid State Commun. 95, 443 1995

    Article  CAS  Google Scholar 

  8. F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, F. Priolo: Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films. J. Appl. Phys. 95, 3723 2004

    Article  CAS  Google Scholar 

  9. K. Murakami, T. Suzuki, T. Makimura, M. Tamura: Si nanocrystallites in SiO2 with intense visible photoluminescence synthesized from SiOx films deposited by laser ablation. Appl. Phys. A 69, S13 1999

    CAS  Google Scholar 

  10. D. Riabinina, C. Durand, J. Margot, M. Chaker, G.A. Botton, F. Rosei: Nucleation and growth of Si nanocrystals in an amorphous SiO2 matrix. Phys. Rev. B 74, 075334 2006

    Article  Google Scholar 

  11. D. Riabinina, C. Durand, F. Rosei, M. Chaker: Luminescent silicon nanostructures synthesized by laser ablation. Phys. Status Solidi A 204, 1623 2007

    Article  CAS  Google Scholar 

  12. S. Zhang, W. Zhang, J. Yuan: The preparation of photoluminescent Si nanocrystal–SiOx films by reactive evaporation. Thin Solid Films 326, 92 1998

    Article  CAS  Google Scholar 

  13. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, J. Bläsing: Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach. Appl. Phys. Lett. 80, 661 2002

    Article  CAS  Google Scholar 

  14. T. Fischer, V. Petrova-Koch, K. Shcheglov, M.S. Brandt, F. Koch: Continuously tunable photoluminescence from Si+-implanted and thermally annealed SiO2 films. Thin Solid Films 276, 100 1996

    Article  CAS  Google Scholar 

  15. S. Guha, S.B. Qadri, R.G. Musket, M.A. Wall, T. Shimizu-Iwayama: Characterization of Si nanocrystals grown by annealing SiO2 films with uniform concentrations of implanted Si. J. Appl. Phys. 88, 3954 2000

    Article  CAS  Google Scholar 

  16. Y. Liu, T.P. Chen, Y.Q. Fu, M.S. Tse, J.H. Hsieh, P.F. Ho, Y.C. Liu: A study on Si nanocrystal formation in Si-implanted SiO2 films by x-ray photoelectron spectroscopy. J. Phys. D: Appl. Phys. 36, L97 2003

    Article  CAS  Google Scholar 

  17. V. Iancu, M. Draghici, L. Jdira, M.L. Ciurea: Conduction mechanisms in silicon-based nanocomposites. J. Optoelectron. Adv. Mater. 6, 53 2004

    CAS  Google Scholar 

  18. M.L. Ciurea, V.S. Teodorescu, V. Iancu, I. Balberg: Electronic transport in Si/SiO2 nanocomposite films. Chem. Phys. Lett. 423, 225 2006

    Article  CAS  Google Scholar 

  19. V.S. Teodorescu, M.L. Ciurea, V. Iancu, M.G. Blanchin Microstructure of Si/SiO2nanocomposite films in Proceedings of the 27th International Semiconductor Conference CAS’ 04, Sinaia, Romania Proc. CAS’ 04, IEEE CN 04TH8748, Mini Print Bucharest, Romania 2004 Vol. 1, 59

  20. B. Abeles, P. Sheng, M.D. Coutts, Y. Arie: Structural and electrical properties of granular metal films. Adv. Phys. 24, 407 1975

    Article  CAS  Google Scholar 

  21. B. Thuillier, J.P. Boyeaux, A. Kaminski, A. Laugier: Transmission electron microscopy and EDS analysis of screen-printed contacts formation on multicrystalline silicon solar cells. Mater. Sci. Eng., B 102(1-3), 58 2003

    Google Scholar 

  22. Y. Wakayama, T. Inokuma, S. Hasegawa: Nanoscale structural investigation of Si crystallites grown from silicon suboxide films by thermal annealing. J. Cryst. Growth 183, 124 1998

    Article  CAS  Google Scholar 

  23. G. Hadjisavvas, P.C. Kelires: Theory of interface structure, energetics, and electronic properties of embedded Si/a-SiO2 nanocrystals. Physica E (Amsterdam) 38, 99 2007

    Article  CAS  Google Scholar 

  24. J-O. Malm, M.A. O’Keefe: Deceptive “lattice spacings” in high-resolution micrographs of metal nanoparticles. Ultramicroscopy 68, 13 1997

    Article  CAS  Google Scholar 

  25. I. Stavarache, M.L. Ciurea: Percolation phenomena in Si–SiO2 nanocomposite films. J. Optoelectron. Adv. Mater. 9, 2644 2007

    CAS  Google Scholar 

  26. X.W. Du, H. Li, Y.W. Lu, J. Sun: Preferential growth of Si nanocrystals in SiO2/Si/SiO2 sandwich structure. J. Cryst. Growth 305, 59 2007

    Article  CAS  Google Scholar 

  27. U. Kahler, H. Hofmeister: Size evolution and photoluminescence of silicon nanocrystallites in evaporated SiOx thin films upon thermal processing. Appl. Phys. A 74, 13 2002

    Article  CAS  Google Scholar 

  28. L. Khomenkova, N. Korsunska, T. Stara, Y. Venger, C. Sada, E. Trave, Y. Goldstein, J. Jedrzejewski, E. Savir: Depth redistribution of components of SiOx layers prepared by magnetron sputtering in the process of their decomposition. Thin Solid Films 515, 6749 2007

    Article  CAS  Google Scholar 

  29. D. Bauerle: Laser Processing and Chemistry 2nd ed. edited by Springer Berlin 1995 576

    Google Scholar 

  30. D. Mathiot, J.P. Schunck, M. Perego, M. Fanciulli, P. Normand, C. Tsamis, D. Tsoukalas: Silicon self-diffusivity measurement in thermal SiO2 by 30Si/28Si isotopic exchange. J. Appl. Phys. 94, 2136 2003

    Article  CAS  Google Scholar 

  31. M.A. Lamkin, F.L. Riley, R.J. Fordham: Oxygen mobility in silicon dioxide and silicate glasses: A review. J. Eur. Ceram. Soc. 10, 347 1992

    Article  CAS  Google Scholar 

  32. M. Uematsu, M. Gunji, M. Tsuchiya, K.M. Itoh: Enhanced oxygen exchange near the oxide/silicon interface during silicon thermal oxidation. Thin Solid Films 515, 6596 2007

    Article  CAS  Google Scholar 

  33. A. Baldan: Review progress in Ostwald ripening theories and their applications to nickel-base superalloys. Part I: Ostwald ripening theories. J. Mater. Sci. 37, 2171 2002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor Isaac Balberg, Racah Institute, Hebrew University of Jerusalem, for some of the investigated samples. This work was supported from the CERES 4-169/2004, CEEX 0611-13, and CEEX 6113 Projects, in the frame of the National Plan for Research, Development and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.L. Ciurea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teodorescu, V., Ciurea, M., Iancu, V. et al. Morphology of Si nanocrystallites embedded in SiO2 matrix. Journal of Materials Research 23, 2990–2995 (2008). https://doi.org/10.1557/JMR.2008.0358

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0358

Navigation