Skip to main content
Log in

Hydrogen in tungsten: Absorption, diffusion, vacancy trapping, and decohesion

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Understanding the interaction between atomic hydrogen and solid tungsten is important for the development of fusion reactors in which proposed tungsten walls would be bombarded with high energy particles including hydrogen isotopes. Here, we report results from periodic density-functional theory calculations for three crucial aspects of this interaction: surface-to-subsurface diffusion of H into W, trapping of H at vacancies, and H-enhanced decohesion, with a view to assess the likely extent of hydrogen isotope incorporation into tungsten reactor walls. We find energy barriers of (at least) 2.08 eV and 1.77 eV for H uptake (inward diffusion) into W(001) and W(110) surfaces, respectively, along with very small barriers for the reverse process (outward diffusion). Although H dissolution in defect-free bulk W is predicted to be endothermic, vacancies in bulk W are predicted to exothermically trap multiple H atoms. Furthermore, adsorbed hydrogen is predicted to greatly stabilize W surfaces such that decohesion (fracture) may result from high local H concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Toschi, P. Barabaschi, D. Campbell, F. Elio, D. Maisonnier, D. Ward How far is a fusion power reactor from an experimental reactor. Fusion Eng. Des. 56–57, 163 (2001)

    Article  Google Scholar 

  2. H. Bolt, V. Barabash, W. Krauss, J. Linke, R. Neu, S. Suzuki, N. Yoshida Materials for the plasma-facing components of fusion reactors. J. Nucl. Mater. 329–33, 66 (2004)

    Article  CAS  Google Scholar 

  3. J.B. Condon, T. Schober Hydrogen bubbles in metals. J. Nucl. Mater. 207, 1 (1993)

    Article  CAS  Google Scholar 

  4. D. Naujoks, K. Asmussen, Bessenrodt-M. Weberpals, S. Deschka, R. Dux, W. Engelhardt, A.R. Field, G. Fussmann, J.C. Fuchs, C. García-Rosales, S. Hirsch, P. Ignacz, G. Lieder, K.F. Mast, R. Neu, R. Radtke, J. Roth, U. Wenzel Tungsten as target material in fusion devices. Nucl. Fusion 36, 671 (1996)

    Article  CAS  Google Scholar 

  5. M. Kaufmann, R. Neu Tungsten as first wall material in fusion devices. Fusion Eng. Des. 82, 521 (2007)

    Article  CAS  Google Scholar 

  6. E. Serra, G. Benamati, O.V. Ogorodnikova Hydrogen isotopes transport parameters in fusion reactor materials. J. Nucl. Mater. 255, 105 (1998)

    Article  CAS  Google Scholar 

  7. W.M. Shu, A. Kawasuso, Y. Miwa, E. Wakai, G.N. Luo, T. Yamanishi Microstructure dependence of deuterium retention and blistering in the near-surface region of tungsten exposed to high flux deuterium plasmas of 38 eV at 315K. Phys. Scr. T. 128, 96 (2007)

    Article  Google Scholar 

  8. V.K. Alimov, J. Roth, M. Mayer Depth distribution of deuterium in single- and polycrystalline tungsten up to depths of several micrometers. J. Nucl. Mater. 337, 619 (2005)

    Article  CAS  Google Scholar 

  9. M. Poon, Macaulay-R.G. Newcombe, J.W. Davis, A.A. Haasz Effects of background gas impurities during D+ irradiation on D trapping in single crystal tungsten. J. Nucl. Mater. 337, 629 (2005)

    Article  CAS  Google Scholar 

  10. T.E. Felter, R.A. Barker, P.J. Estrup Phase-transition on Mo(100) and W(100) surfaces. Phys. Rev. Lett. 38, 1138 (1977)

    Article  CAS  Google Scholar 

  11. M.K. Debe, D.A. King Clean thermally induced W[001](1 × 1)-]() R 45° surface-structure transition and its crystallography. Surf. Sci. 81, 193 (1979)

    Article  CAS  Google Scholar 

  12. R.A. Barker, P.J. Estrup Surface-structures and phase-diagram for the H-W(001) chemisorption system. J. Chem. Phys. 74, 1442 (1981)

    Article  CAS  Google Scholar 

  13. D.A. King Clean and adsorbate-induced surface phase-transitions on W(100). Phys. Scr. T. 4, 34 (1983)

    Article  Google Scholar 

  14. H. Landskron, N. Bickel, K. Heinz, G. Schmidtlein, K. Muller LEED intensity analysis of the clean W(100) C(2x2) surface reconstruction. J. Phys. Condens. Matter 1, 1 (1989)

    Article  CAS  Google Scholar 

  15. M.S. Altman, P.J. Estrup, I.K. Robinson Multilayer reconstruction of the W(001) surface. Phys. Rev. B 38, 5211 (1988)

    Article  CAS  Google Scholar 

  16. I. Stensgaard, L.C. Feldman, P.J. Silverman Reconstruction of the W(001) surface and its reordering by hydrogen adsorption, studied by MEV ion scattering. Phys. Rev. Lett. 42, 247 (1979)

    Article  CAS  Google Scholar 

  17. K.S. Shin, H.W. Kim, J.W. Chung Evidence for a driving mechanism of the W(001) reconstruction. Surf. Sci. 385, L978 (1997)

    Article  CAS  Google Scholar 

  18. R. Yu, H. Krakauer, D. Singh Equilibrium geometry and electronic-structure of the low-temperature W(001) surface. Phys. Rev. B 45, 8671 (1992)

    Article  CAS  Google Scholar 

  19. W. Xu, J.B. Adams Structure of 7 W-surfaces. Surf. Sci. 319, 45 (1994)

    Article  CAS  Google Scholar 

  20. H.L. Meyerheim, D. Sander, R. Popescu, P. Steadman, S. Ferrer, J. Kirschner Interlayer relaxation of W(110) studied by surface x-ray diffraction. Surf. Sci. 475, 103 (2001)

    Article  CAS  Google Scholar 

  21. M. Arnold, G. Hupfauer, P. Bayer, L. Hammer, K. Heinz, B. Kohler, M. Scheffler Hydrogen on W(110): An adsorption structure revisited. Surf. Sci. 382, 288 (1997)

    Article  CAS  Google Scholar 

  22. P.J. Estrup, J. Anderson Chemisorption of hydrogen on tungsten (100). J. Chem. Phys. 45, 2254 (1966)

    Article  CAS  Google Scholar 

  23. R.A. Barker, P.J. Estrup Hydrogen on tungsten (100) adsorbate induced surface reconstruction. Phys. Rev. Lett. 41, 1307 (1978)

    Article  CAS  Google Scholar 

  24. D.A. King, G. Thomas Displacive surface phases formed by hydrogen chemisorption on W(001). Surf. Sci. 92, 201 (1980)

    Article  CAS  Google Scholar 

  25. A.H. Smith, R.A. Barker, P.J. Estrup Desorption of hydrogen from tungsten (100). Surf. Sci. 136, 327 (1984)

    Article  CAS  Google Scholar 

  26. P.W. Tamm, L.D. Schmidt Binding states of hydrogen on tungsten. J. Chem. Phys. 54, 4775 (1971)

    Article  CAS  Google Scholar 

  27. E.W. Plummer, A.E. Bell Field-emission energy-distributions of hydrogen and deuterium on (100) and (110) planes of tungsten. J. Vac. Sci. Technol. 9, 583 (1972)

    Article  CAS  Google Scholar 

  28. J.B. Restorff, H.D. Drew Surface reflectance spectroscopy of hydrogen chemisorbed on W(100), W(110) and W(111). Surf. Sci. 88, 399 (1979)

    Article  CAS  Google Scholar 

  29. R. Difoggio, R. Gomer Diffusion of hydrogen and deuterium on the (110) plane of tungsten. Phys. Rev. B 25, 3490 (1982)

    Article  CAS  Google Scholar 

  30. S.C. Wang, R. Gomer Diffusion of hydrogen, deuterium, and tritium on the (110) plane of tungsten. J. Chem. Phys. 83, 4193 (1985)

    Article  CAS  Google Scholar 

  31. C. Dharmadhikari, R. Gomer Diffusion of hydrogen and deuterium on the (111) plane of tungsten. Surf. Sci. 143, 223 (1984)

    Article  CAS  Google Scholar 

  32. O. Grizzi, M. Shi, H. Bu, J.W. Rabalais, R.R. Rye, P. Nordlander Determination of the structure of hydrogen on a W(211) surface. Phys. Rev. Lett. 63, 1408 (1989)

    Article  CAS  Google Scholar 

  33. H.W. Fink, G. Ehrlich Lattice steps and adatom binding on W(211). Surf. Sci. 143, 125 (1984)

    Article  CAS  Google Scholar 

  34. P.G. Flahive, W.R. Graham Determination of single atom surface site geometry on W(111), W(211) and W(321). Surf. Sci. 91, 463 (1980)

    Article  CAS  Google Scholar 

  35. R.R. Rye, B.D. Barford, P.G. Cartier Chemisorption of H2 on W(211). J. Chem. Phys. 59, 1693 (1973)

    Article  CAS  Google Scholar 

  36. T.B. Grimley, M. Torrini Interaction between two hydrogen atoms adsorbed on (100) tungsten. J. Phys. C: Solid State Phys. 6, 868 (1973)

    Article  CAS  Google Scholar 

  37. K.O.E. Henriksson, K. Vortler, S. Dreissigacker, K. Nordlund, J. Keinonen Sticking of atomic hydrogen on the tungsten (001) surface. Surf. Sci. 600, 3167 (2006)

    Article  CAS  Google Scholar 

  38. J. Zhang, Y.J. Yu, Z.X. Wang, W.N. Qin, Z.Y. Diao, C. Hao Adsorption sites and states for H atom on W low-index surfaces. Acta Chim. Sinica 65, 785 (2007)

    CAS  Google Scholar 

  39. H.F. Busnengo, A.E. Martinez H2 chemisorption on W(100) and W(110) surfaces. J. Phys. Chem. C 112, 5579 (2008)

    Article  CAS  Google Scholar 

  40. A. Nojima, K. Yamashita A theoretical study of hydrogen adsorption and diffusion on a W(110) surface. Surf. Sci. 601, 3003 (2007)

    Article  CAS  Google Scholar 

  41. J.A. White, D.M. Bird, M.C. Payne Dissociation of H2 on W(100). Phys. Rev. B 53, 1667 (1996)

    Article  CAS  Google Scholar 

  42. R. Difoggio, R. Gomer Tunneling of hydrogen in surface-diffusion on the tungsten-(110) plane. Phys. Rev. Lett. 44, 1258 (1980)

    Article  CAS  Google Scholar 

  43. M. Kay, G.R. Darling, S. Holloway Comparing quantum and classical dynamics: H2 dissociation on W(100). J. Chem. Phys. 108, 4614 (1998)

    Article  CAS  Google Scholar 

  44. R. Frauenfelder Solution and diffusion of hydrogen in tungsten. J. Vac. Sci. Technol. 6, 388 (1969)

    Article  CAS  Google Scholar 

  45. Y. Hayashi, W.M. Shu Iron (ruthenium and osmium)-hydrogen systems. Solid State Phenom. 73–75, 65 (2000)

    Article  Google Scholar 

  46. K.O.E. Henriksson, K. Nordlund, A. Krasheninnikov, J. Keinonen Difference in formation of hydrogen and helium clusters in tungsten. Appl. Phys. Lett. 87, 3 (2005)

    Article  CAS  Google Scholar 

  47. Y.L. Liu, Y. Zhang, G.N. Luo, G.H. Lu Structure, stability and diffusion of hydrogen in tungsten: A first-principles study. J. Nucl. Mater. 390–391, 1032 (2009)

    Article  CAS  Google Scholar 

  48. H. Jónsson, G. Mills, K.W. Jacobsen Nudged elastic band method for finding minimum energy paths of transitions Classical and Quantum Dynamics in Condensed Phase Simulations edited by B.J. Berne, G. Ciccotti, and D.F. Coker (World Scientific, Singapore 1998) 385

    Chapter  Google Scholar 

  49. S.T. Picraux, F.L. Vook Deuterium lattice location in Cr and W. Phys. Rev. Lett. 33, 1216 (1974)

    Article  CAS  Google Scholar 

  50. R.A. Anderl, D.F. Holland, G.R. Longhurst, R.J. Pawelko, C.L. Trybus, C.H. Sellers Deuterium transport and trapping in polycrystalline tungsten. Fusion Technol. 21, 745 (1992)

    Article  CAS  Google Scholar 

  51. K.L. Wilson, R. Bastasz, R.A. Causey, D.K. Brice, B.L. Doyle, W.R. Wampler, W. Moller, B.M.U. Scherzer, T. Tanabe Trapping, detrapping and release of implanted hydrogen isotopes. Nucl. Fusion 1, 31 (1991)

    CAS  Google Scholar 

  52. M. Poon, A.A. Haasz, J.W. Davis Modelling deuterium release during thermal desorption of D+-irradiated tungsten. J. Nucl. Mater. 374, 390 (2008)

    Article  CAS  Google Scholar 

  53. T.J. Venhaus, R.A. Causey Analysis of thermal desorption spectra to understand the migration of hydrogen in tungsten. Fusion Technol. 39, 868 (2001)

    Article  CAS  Google Scholar 

  54. A.S. Soltan, R. Vassen, P. Jung Migration and immobilization of hydrogen and helium in gold and tungsten at low temperatures. J. Appl. Phys. 70, 793 (1991)

    Article  CAS  Google Scholar 

  55. J.R. Fransens, M.S.A. Elkeriem, F. Pleiter Hydrogen vacancy interaction in tungsten. J. Phys. Condens. Matter 3, 9871 (1991)

    Article  CAS  Google Scholar 

  56. Y.L. Liu, Y. Zhang, H.B. Zhou, G.H. Lu, F. Liu, G.N. Luo Vacancy trapping mechanism for hydrogen bubble formation in metal. Phys. Rev. B 79, 4 (2009)

    Google Scholar 

  57. D.E. Jiang, E.A. Carter First principles assessment of ideal fracture energies of materials with mobile impurities: Implications for hydrogen embrittlement of metals. Acta Mater. 52, 4801 (2004)

    Article  CAS  Google Scholar 

  58. G. Kresse, J. Furthmuller Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    Article  CAS  Google Scholar 

  59. G. Kresse, J. Furthmuller Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996)

    Article  CAS  Google Scholar 

  60. G. Kresse, D. Joubert From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

    Article  CAS  Google Scholar 

  61. P.E. Blochl Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

    Article  CAS  Google Scholar 

  62. J.P. Perdew, K. Burke, M. Ernzerhof Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  63. M. Methfessel, A.T. Paxton High-precision sampling for brillouin-zone integration in metals. Phys. Rev. B 40, 3616 (1989)

    Article  CAS  Google Scholar 

  64. K.W. Kwak, M.Y. Chou, N. Troullier First-principles study of the H-induced reconstruction of W(110). Phys. Rev. B 53, 13734 (1996)

    Article  CAS  Google Scholar 

  65. C. Kittel Introduction to Solid State Physics 7th ed. (John Wiley & Sons, Inc., New York 2002)

    Google Scholar 

  66. K.P. Huber, G. Herzberg Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (Van Norstrand Reinhold Co., New York 1979)

    Book  Google Scholar 

  67. G.H. Vineyard Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3, 121 (1957)

    Article  CAS  Google Scholar 

  68. H.B. Huntington, G.A. Shirn, E.S. Wajda Calculation of the entropies of lattice defects. Phys. Rev. 99, 1085 (1955)

    Article  CAS  Google Scholar 

  69. J. Harris, S. Andersson H2 dissociation at metal surfaces. Phys. Rev. Lett. 55, 1583 (1985)

    Article  CAS  Google Scholar 

  70. C. Wert, C. Zener Interstitial atomic diffusion coefficients. Phys. Rev. 76, 1169 (1949)

    Article  CAS  Google Scholar 

  71. R. Frauenfelder Solution and diffusion of hydrogen in tungsten. J. Vacuum Sci. Technol. 6, 388 (1969)

    Article  CAS  Google Scholar 

  72. A. Devita, M.J. Gillan The ab initio calculation of defect energetics in aluminum. J. Phys. Condens. Matter 3, 6225 (1991)

    Article  CAS  Google Scholar 

  73. Y. Tateyama, T. Ohno Stability and clusterization of hydrogen vacancy complexes in alpha-Fe: An ab initio study. Phys. Rev. B 67, 174105 (2003)

    Article  CAS  Google Scholar 

  74. A. Ramasubramaniam, M. Itakura, E.A. Carter Interatomic potentials for hydrogen in alpha-iron based on density-functional theory. Phys. Rev. B 79, 174101 (2009)

    Article  CAS  Google Scholar 

  75. Y. Fukai Superabundant vacancies formed in metal-hydrogen alloys. Phys. Scr. T. 103, 11 (2003)

    Article  Google Scholar 

  76. Y. Fukai, N. Okuma Formation of superabundant vacancies in Pd hydride under high hydrogen pressures. Phys. Rev. Lett. 73, 1640 (1994)

    Article  CAS  Google Scholar 

  77. G. Lu, E. Kaxiras Hydrogen embrittlement of aluminum: The crucial role of vacancies. Phys. Rev. Lett. 94, 4 (2005)

    Google Scholar 

  78. D.C. Sorescu First-principles calculations of the adsorption and diffusion of hydrogen on Fe(100) surface and in the bulk. Catal. Today 105, 44 (2005)

    Article  CAS  Google Scholar 

  79. G.N. Luo, W.M. Shu, M. Nishi Influence of blistering on deuterium retention in tungsten irradiated by high flux deuterium 10–100 eV plasmas. Fusion Eng. Des. 81, 957 (2006)

    Article  CAS  Google Scholar 

  80. K. Momma, F. Izumi VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily A. Carter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, D.F., Carter, E.A. Hydrogen in tungsten: Absorption, diffusion, vacancy trapping, and decohesion. Journal of Materials Research 25, 315–327 (2010). https://doi.org/10.1557/JMR.2010.0036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0036

Navigation