Skip to main content
Log in

Indentation of polydimethylsiloxane submerged in organic solvents

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This work uses a method based on indentation to characterize a polydimethylsiloxane (PDMS) elastomer submerged in an organic solvent (decane, heptane, pentane, or cyclohexane). An indenter is pressed into a disk of a swollen elastomer to a fixed depth, and the force on the indenter is recorded as a function of time. By examining how the relaxation time scales with the radius of contact, one can differentiate the poroelastic behavior from the viscoelastic behavior. By matching the relaxation curve measured experimentally to that derived from the theory of poroelasticity, one can identify elastic constants and permeability. The measured elastic constants are interpreted within the Flory–Huggins theory. The measured permeability indicates that the solvent migrates in PDMS by diffusion, rather than by convection. This work confirms that indentation is a reliable and convenient method to characterize swollen elastomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
TABLE I.
TABLE II.
FIG. 7.
TABLE III.
FIG. 8.
FIG. 9.

Similar content being viewed by others

References

  1. R. Duncan: The dawning era of polymer therapeutics. Nat. Rev. Drug Discovery 2, 347 (2003).

    Article  CAS  Google Scholar 

  2. B. Jeong, Y.H. Bae, D.S. Lee, and S.W. Kim: Biodegradable block copolymers as injectable drug delivery systems. Nature 388, 860 (1997).

    Article  CAS  Google Scholar 

  3. R. Langer: Drug delivery and targeting. Nature 392, 5 (1998).

    CAS  Google Scholar 

  4. Y. Luo and M.S. Shoichet: A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat. Mater. 3, 249 (2004).

    Article  CAS  Google Scholar 

  5. A.P. Nowak, V. Breedveld, L. Pakstis, B. Ozbas, D.J. Pine, D. Pochan, and T.J. Deming: Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417, 424 (2002).

    Article  CAS  Google Scholar 

  6. D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, and B.H. Jo: Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588 (2000).

    Article  CAS  Google Scholar 

  7. M. Tokeshi, T. Minagawa, K. Uchiyama, A. Hibara, K. Sato, H. Hisamoto, and T. Kitamori: Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network. Anal. Chem. 74, 1565 (2002).

    Article  CAS  Google Scholar 

  8. S. Cai, Y. Lou, P. Ganguly, A. Robisson, and Z. Suo: Force generated by a swelling elastomer subject to constraint. J. Appl. Phys. 107, 103535 (2010).

    Article  CAS  Google Scholar 

  9. X. Zhao, N. Huebsch, D.J. Mooney, and Z. Suo: Stress-relaxation behavior in gels with ionic and covalent crosslinks. J. Appl. Phys. 107, 063509 (2010).

    Article  CAS  Google Scholar 

  10. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  11. D.M. Ebenstein and L.A. Pruitt: Nanoindentation of soft hydrated materials for application to vascular tissues. J. Biomed. Mater. Res. Part A 69, 222 (2004).

    Article  CAS  Google Scholar 

  12. J.D. Kaufman, G.J. Miller, E.F. Morgan, and C.M. Klapperich: Time-dependent mechanical characterization of poly(2-hydroxyethyl methacrylate) hydrogels using nanoindentation and unconfined compression. J. Mater. Res. 23, 1472 (2008).

    Article  CAS  Google Scholar 

  13. G. Constantinides, Z.I. Kalcioglu, M. McFarland, J.F. Smith, and K.J. Van Vliet: Probing mechanical properties of fully hydrated gels and biological tissues. J. Biomech. 41, 3285 (2008).

    Article  Google Scholar 

  14. M. Galli, K.S.C. Comley, T.A.V. Shean, and M.L. Oyen: Viscoelastic and poroelastic mechanical characterization of hydrated gels. J. Mater. Res. 24, 973 (2009).

    Article  CAS  Google Scholar 

  15. M. Galli and M.L. Oyen: Spherical indentation of a finite poroelastic coating. Appl. Phys. Lett. 93, 031911 (2008).

    Article  CAS  Google Scholar 

  16. M. Galli and M.L. Oyen: Fast indentation of poroelastic parameters from indentation tests. CMES 48, 241 (2009).

    Google Scholar 

  17. S. Chiravarambath, N.K. Simha, R. Namani, and J.L. Lewis: Poroviscoelastic cartilage properties in the mouse from indentation. J. Biomech. Eng. 131, 011004 (2009).

    Article  Google Scholar 

  18. W.C. Lin, K.R. Shull, C.Y. Hui, and Y.Y. Lin: Contact measurement of internal fluid flow within poly(n-isopropylacrylamide) gels. J. Chem. Phys. 127, 094906 (2007).

    Article  CAS  Google Scholar 

  19. C.Y. Hui, Y.Y. Lin, F.C. Chuang, K.R. Shull, and W.C. Ling: A contact mechanics method for characterizing the elastic properties and permeability of gels. J. Polym. Sci., Part B: Polym. Phys. 43, 359 (2006).

    Article  CAS  Google Scholar 

  20. Y.Y. Lin and B.W. Hu: Load relaxation of a flat rigid circular indenter on a gel half space. J. Non-Cryst. Solids 352, 4034 (2006).

    Article  CAS  Google Scholar 

  21. Y. Hu, X. Zhao, J.J. Vlassak, and Z. Suo: Using indentation to characterize the poroelasticity of gels. Appl. Phys. Lett. 96, 121904 (2010).

    Article  CAS  Google Scholar 

  22. M.W. Toepke and D.J. Beebe: PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6, 1484 (2006).

    Article  CAS  Google Scholar 

  23. J.N. Lee, C. Park, and G.M. Whitesides: Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75, 6544 (2003).

    Article  CAS  Google Scholar 

  24. W. Hong, X. Zhao, J. Zhou, and Z. Suo: A theory of coupled diffusion and large deformation in polymeric gels. J. Mech. Phys. Solids 56, 1779 (2008).

    Article  CAS  Google Scholar 

  25. M. Doi: Gel dynamics. J. Phys. Soc. Jpn. 78, 052001 (2009).

    Article  CAS  Google Scholar 

  26. K. Terzaghi: The calculation of permeability numbers of the clay out of the process of the hydrodynamic phenomenon tension. Sitzungsber. Akad. Wiss. Wien Math.–Naturewiss. Kl., Abt. IIa 132, 125 (1923).

    Google Scholar 

  27. M.A. Biot: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155 (1941).

    Article  Google Scholar 

  28. I.N. Sneddon: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  29. Y. Li and T. Tanaka: Kinetics of swelling and shrinking of gels. J. Chem. Phys. 92, 1365 (1990).

    Article  CAS  Google Scholar 

  30. M.R. Vanlandingham, N-K. Chang, P.L. Drzal, C.C. White, and S-H. Chang: Viscoelastic characterization of polymers using instrumented indentation. I. Quasi-static testing. J. Polym. Sci., Part B: Polym. Phys. 43, 1794 (2005).

    Article  CAS  Google Scholar 

  31. I-K. Lin, K-S. Ou, Y-M. Liao, Y. Liu, K-S. Chen, and X. Zhang: Viscoelastic characterization and modeling of polymer transducers for biological applications. J. Microelectromech. Syst. 18, 1087 (2009).

    Article  CAS  Google Scholar 

  32. J.D. Ferry: Viscoelastic Properties of Polymers, 3rd ed. (John Wiley and Sons, New York, 1980).

    Google Scholar 

  33. K.J. Johnson: Contact Mechanics (Cambridge University Press, New York, 1987).

    Google Scholar 

  34. D.C. Douglass and D.W. McCall: Diffusion in paraffin hydrocarbons. J. Phys. Chem. 62, 1102 (1958).

    Article  CAS  Google Scholar 

  35. E. Fishman: Self-diffusion in liquid n-pentane and n-heptane. J. Phys. Chem. 59, 469 (1955).

    Article  CAS  Google Scholar 

  36. M. Holz, S.R. Heil, and A. Sacco: Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate H NMR PFG measurements. Phys. Chem. Chem. Phys. 2, 4740 (2000).

    Article  CAS  Google Scholar 

  37. E. Geissler and A. M. Hecht: The Poisson ratio in polymer gels. 2. Macromolecules 14, 185 (1981).

    Article  CAS  Google Scholar 

  38. S. Hirotsu: Softening of bulk modulus and negative Poisson’s ratio near the volume phase transition of polymer gels. J. Chem. Phys. 94, 3949 (1991).

    Article  CAS  Google Scholar 

  39. J. Tang, M.A. Tung, J. Lelievre, and Y. Zeng: Stress–strain relationships for gellan gels in tension, compression and torsion. J. Food Eng. 31, 511 (1997).

    Article  Google Scholar 

  40. D.R. Paul and O.M. Ebra-Lima: Pressure-induced diffusion of organic liquids through highly swollen polymer membranes. J. Appl. Polym. Sci. 14, 2201 (1970).

    Article  CAS  Google Scholar 

  41. D.R. Paul and O.M. Ebra-Lima: The mechanism of liquid transport through swollen polymer membranes. J. Appl. Polym. Sci. 15, 2199 (1971).

    Article  CAS  Google Scholar 

  42. D.R. Paul: Further comments on the relation between hydraulic permeation and diffusion. J. Polym. Sci., Polym. Phys. Ed. 12, 1221 (1974).

    Article  CAS  Google Scholar 

  43. D.R. Paul: Reformulation of the solution-diffusion theory of reverse osmosis. J. Membr. Sci. 241, 371 (2004).

    Article  CAS  Google Scholar 

  44. P. Meares: On the mechanism of desalination by reversed osmotic flow through cellulose acetate membranes. Eur. Polym. J. 2, 241 (1966).

    Article  CAS  Google Scholar 

  45. A. Peterlin and H. Yasuda: Comments on the relation between hydraulic permeability and diffusion in homogeneous swollen membranes. J. Polym. Sci., Polym. Phys. Ed. 12, 1215 (1974).

    Article  CAS  Google Scholar 

  46. H. Yasuda and A. Peterlin: Diffusive and bulk flow transport in polymers. J. Appl. Polym. Sci. 17, 433 (1973).

    Article  CAS  Google Scholar 

  47. J.G. Wijmans and R.W. Baker: The solution-diffusion model: A review. J. Membr. Sci. 107, 1 (1995).

    Article  CAS  Google Scholar 

  48. T. Tanaka and D.J. Fillmore: Kinetics of swelling of gels. J. Chem. Phys. 70, 1214 (1979).

    Article  CAS  Google Scholar 

  49. T. Yamaue and M. Doi: Swelling dynamics of constrained thin-plate gels under an external force. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 70, 011401 (2004).

    Article  CAS  Google Scholar 

  50. T. Hajsz, I. Csetneki, G. Filipcsei, and M. Zrinyi: Swelling kinetics of anisotropic filler loaded PDMS networks. Phys. Chem. Chem. Phys. 8, 977 (2006).

    Article  CAS  Google Scholar 

  51. P.J. Flory: Principles of Polymer Chemistry (Cornell University, Ithaca, NY, 1953).

    Google Scholar 

  52. P.J. Flory: Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51 (1942).

    Article  CAS  Google Scholar 

  53. M.L. Huggins: Solutions of long chain compounds. J. Chem. Phys. 9, 440 (1941).

    Article  CAS  Google Scholar 

  54. M. Braden, D. Latham, and M.P. Patel: Observations on the swelling of cross-linked poly(dimethylsiloxane) networks by solvents. Eur. Polym. J. 41, 3069 (2005).

    Article  CAS  Google Scholar 

  55. M. Gottlieb and M. Herskowitz: Estimation of the χ parameter for poly(dimethylsiloxane) solutions by the UNIFAC group contribution method. Macromolecules 14, 1468 (1981).

    Article  CAS  Google Scholar 

  56. P.J. Flory: Thermodynamics of polymer solutions. Fifteenth spiers memorial lectures. Discuss. Faraday Soc. 49, 7 (1970).

    Article  Google Scholar 

  57. P.J. Flory and H. Shih: Thermodynamics of solutions of poly(dimethylsiloxane) in benzene, cyclohexane, and chlorobenzene. Macromolecules 5, 761 (1972).

    Article  CAS  Google Scholar 

  58. N. Kuwahara, T. Okazawa, and M. Kaneko: Osmotic pressures of moderately concentrated polydimethylsiloxane solutions. J. Polym. Sci., Part C 23, 543 (1968).

    Article  Google Scholar 

  59. J. Schurz: Rheology of polymer solutions of the network type. Prog. Polym. Sci. 16, 1 (1991).

    Article  CAS  Google Scholar 

  60. M. Grassi, C. Sandolo, D. Perin, T. Coviello, R. Lapasin, and G. Grassi: Structural characterization of calcium alginate matrices by means of mechanical and release tests. Molecules 14, 3003 (2009).

    Article  CAS  Google Scholar 

  61. W.V. Vadakan and G.W. Scherer: Measuring permeability of rigid materials by a beam-bending method: II, Porous glass. J. Am. Ceram. Soc. 83, 2240 (2000).

    Article  Google Scholar 

  62. T. Boontheekul, H-J. Kong, and D.J. Mooney: Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular-weight distribution. Biomaterials 26, 2455 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation (NSF) (CMMI-0800161), Multidisciplinary University Research Initiative (MURI) (W911NF-09-1-0476), and Materials Research Science and Engineering Center (MRSEC) at Harvard University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Suo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Chen, X., Whitesides, G.M. et al. Indentation of polydimethylsiloxane submerged in organic solvents. Journal of Materials Research 26, 785–795 (2011). https://doi.org/10.1557/jmr.2010.35

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.35

Navigation