Skip to main content
Log in

Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A nanoindentation strain-rate jump technique has been developed for determining the local strain-rate sensitivity (SRS) of nanocrystalline and ultrafine-grained (UFG) materials. The results of the new method are compared to conventional constant strain-rate nanoindentation experiments, macroscopic compression tests, and finite element modeling (FEM) simulations. The FEM simulations showed that nanoindentation tests should yield a similar SRS as uniaxial testing and generally a good agreement is found between nanoindentation strain-rate jump experiments and compression tests. However, a higher SRS is found in constant indentation strain-rate tests, which could be caused by the long indentation times required for tests at low indentation strain rates. The nanoindentation strain-rate jump technique thus offers the possibility to use single indentations for determining the SRS at low strain rates with strongly reduced testing times. For UFG-Al, extremely fine-grained regions around a bond layer exhibit a substantial higher SRS than bulk material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
TABLE I.
FIG. 11.
FIG. 12.

Similar content being viewed by others

REFERENCES

  1. H. Gleiter: Nanostructured materials: Basic concepts and microstructure. Acta Mater. 48, 1 (2000).

    CAS  Google Scholar 

  2. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe: Paradoxon of strength and ductility in metals processed by SPD. J. Mater. Res. 17, 5 (2002).

    Article  CAS  Google Scholar 

  3. K.S. Kumar, H. Van Swygenhoven, and S. Suresh: Mechanical behaviour of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).

    Article  CAS  Google Scholar 

  4. J. May, H.W. Höppel, and M. Göken: Strain-rate sensitivity of ultra-fine grained aluminium produced by SPD. Scr. Mater. 53, 189 (2005).

    Article  CAS  Google Scholar 

  5. Y.J. Li, J. Mueller, H.W. Höppel, M. Göken, and W. Blum: Deformation kinetics of nanocrystalline nickel. Acta Mater. 55, 5708 (2007).

    Article  CAS  Google Scholar 

  6. A. Vevecka-Piftaj, A. Böhner, J. May, H.W. Höppel, and M. Göken: Strainrate sensitivity of ultrafine grained aluminium alloy AA6061. Mater. Sci. Forum 584, 741 (2008).

    Article  Google Scholar 

  7. F. Dalla Torre, H. Van Swygenhoven, and M. Victoria: Nanocrystalline electrodeposited Ni: Microstructure and tensile properties. Acta Mater. 50, 3957 (2002).

    Article  CAS  Google Scholar 

  8. H.W. Höppel, J. May, and M. Göken: Enhanced strength and ductility in ultrafine grained aluminium produced by ARB. Adv. Eng. Mater. 6, 781 (2004).

    Article  Google Scholar 

  9. H. Vehoff, D. Lemaire, K. Schüler, T. Waschkies, and B. Yang: The effect of grain size on strain-rate sensitivity and activation volume—from nano to ufg nickel. Int. J. Mat. Res. 98, 259 (2007).

    Article  CAS  Google Scholar 

  10. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  11. M.J. Mayo and W.D. Nix: A micro-indentation study of superplasticity in Pb, Sn and Sn-38wt%Pb. Acta Metall. 36, 2183 (1988).

    Article  CAS  Google Scholar 

  12. M.J. Mayo, R.W. Siegel, A. Narayanasamy, and W.D. Nix: Mechanical properties of nanophase TiO2 as determined by nanoindentation. J. Mater. Res. 5, 1073 (1990).

    Article  CAS  Google Scholar 

  13. M.J. Mayo, R.W. Siegel, Y.X. Liao, and W.D. Nix: Nanoindentation on nanocrystal ZnO. J. Mater. Res. 7, 973 (1992).

    Article  CAS  Google Scholar 

  14. A.F. Bower, N.A. Fleck, A. Needleman, and N. Ogbonna: Indentation of power law creeping solid. Proc. R. Soc. London, Ser. A 441, 97 (1993).

    Article  Google Scholar 

  15. T.O. Mulhearn and D. Tabor: Creep and hardness of metals: A physical study. J. Inst. Met. 89, 7 (1960).

    CAS  Google Scholar 

  16. B.N. Lucas and W.C. Oliver: Indentation power-law creep of high purity. Int. Metal. Mater. Trans. A 30A, 601 (1999).

    Article  CAS  Google Scholar 

  17. J. Alkorta, J.M. Martinez-Esnaola, and J.G. Sevillano: Critical examinations of strain-rate sensitivity measured by nanoindentation methods: Application to severely deformed niobium. Acta Mater. 56, 884 (2008).

    Article  CAS  Google Scholar 

  18. E.W. Hart: Theory of the tensile test. Acta Metall. 15, 351 (1967).

    Article  CAS  Google Scholar 

  19. L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, and S. Suresh: Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater. 53, 2169 (2005).

    Article  CAS  Google Scholar 

  20. W.D. Nix and H. Gao: Indentation size effect of crystalline materials: A law for strain grading plasticity. J. Mech. Phys. Solids 46, 411 (1998).

    Article  CAS  Google Scholar 

  21. K. Durst, B. Backes, and M. Göken: Indentation size effect of metallic materials: Correcting for the size of the plastic zone. Scr. Mater. 52, 1093 (2005).

    Article  CAS  Google Scholar 

  22. B. Backes, K. Durst, and M. Göken: Determination of plastic properties of polycrystalline metallic materials by nanoindentation: Experiments and finite element simulations. Philos. Mag. 86, 5541 (2006).

    Article  CAS  Google Scholar 

  23. R.A. Mirshams and P. Parakala: Nanoindentation of nanocrystalline Ni with geometrically different indenters. Mater. Sci. Eng., A 372, 252 (2004).

    Article  Google Scholar 

  24. H. Natter and R. Hempelmann: Tailor-made nanomaterials designed by electrochemical methods. Electrochim. Acta 49, 51 (2003).

    Article  CAS  Google Scholar 

  25. A. Böhner, V. Maier, K. Durst, H.W. Höppel, and M. Göken: Macro- and nanomechanical properties and strain-rate sensitivity of accumulative roll bonded and equal channel angular pressed ultrafine-grained materials. Adv. Eng. Mater. 13, 251 (2011).

    Article  Google Scholar 

  26. K. Durst, O. Franke, A. Böhner, and M. Göken: Indentation size effect in Ni-Fe solid-solutions. Acta Mater. 55, 6825 (2007).

    Article  CAS  Google Scholar 

  27. G.M. Pharr, J. Strader, and W.C. Oliver: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J. Mater. Res. 24, 653 (2009).

    Article  CAS  Google Scholar 

  28. J. Mueller, K. Durst, D. Amberger, and M. Göken: Local investigations of the mechanical properties of ufg metals by nanoindentation. Mater. Sci. Forum 503 /, 31 (2006).

    Article  Google Scholar 

  29. W. Blum and Y.J. Li: Flow stress and creep rate of nanocrystalline Ni. Scr. Mater. 57, 429 (2007).

    Article  CAS  Google Scholar 

  30. A.G. Atkins and D. Tabor: Plastic indentation in metals with cones. J. Mech. Phys. Solids 13, 149 (1965).

    Article  Google Scholar 

  31. B. Backes, Y.Y. Huang, M. Göken, and K. Durst: The correlation between the internal material length scale and the microstructure in nanoindentation experiments and simulations using the conventional mechanism-based strain gradient plasticity theory. J. Mater. Res. 24, 1197 (2009).

    Article  CAS  Google Scholar 

  32. C.D. Gu, J.S. Lian, Q. Jiang, and W.T. Zheng: Experimental and modeling investigations on the strain-rate sensitivity of an electrodeposited 20 nm grain sized Ni. J. Phys. D: Appl. Phys. 40, 7440 (2007).

    Article  CAS  Google Scholar 

  33. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, and S. Suresh: Some critical experiments on the strain-rate sensitivity of nc nickel. Acta Mater. 51, 5159 (2003).

    Article  CAS  Google Scholar 

  34. Y.F. Shen, W.Y. Xue, Y.D. Wang, Z.Y. Liu, and L. Zuo: Mechanical properties of nanocrystalline nickel film deposited by pulse plating. J. Surf. Coat. 202, 5140 (2008).

    Article  CAS  Google Scholar 

  35. X. Shen, J. Lian, Z. Jiang, and Q. Jiang: High strength and high ductility of electrodeposited nanocrystalline Ni with broad grain size distribution. Mater. Sci. Eng., A 487, 410 (2008).

    Article  Google Scholar 

  36. F. Dalla Torre, P. Spätig, R. Schäublin, and M. Victoria: Deformation behavior and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel. Acta Mater. 53, 2337 (2005).

    Article  CAS  Google Scholar 

  37. Y.M. Wang, A.V. Hamza, and E. Ma: Temperature-dependent strain-rate sensitivity and activation volume in nanocrystalline Ni. Acta Mater. 54, 2715 (2006).

    Article  CAS  Google Scholar 

  38. H.W. Höppel, J. May, P. Eisenlohr, and M. Göken: Strain-rate sensitivity of ultrafine grained materials. Z. Metallk. 96, 6 (2005).

    Google Scholar 

  39. M.A. Meyers, A. Misha, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    Article  CAS  Google Scholar 

  40. E. Schweitzer, K. Durst, D. Amberger, and M. Göken: The mechanical properties in the vicinity of grain boundaries in ultrafine-grained and polycrystalline materials studied by nanoindentation, in Nanoscale Materials and Modeling—Relations Among Processing, Microstructure and Mechanical Properties, edited by P.M. Anderson, T. Foecke, A. Misra, and R.E. Rudd (Mater. Res. Soc. Symp. Proc. 821, Warrendale, PA, 2004), P4.9.1/N4.9.1.

  41. S.H. Lee, Y. Saito, T. Sakai, and H. Utsunomiya: Microstructure and mechanical properties of 6061 aluminum alloy processed by accumulative roll bonding. Mater. Sci. Eng., A 325, 228 (2002).

    Article  Google Scholar 

  42. S.H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya, and T. Sakai: Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process. Scr. Mater. 46, 281 (2002).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the funding of the German Research Council, which, within the framework of its “Excellence Initiative” supports the Cluster of Excellence “Engineering of Advanced Materials” at the University of Erlangen-Nuernberg and the support of “Galvano 21” by the Bayerische Forschungsstiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Durst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, V., Durst, K., Mueller, J. et al. Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. Journal of Materials Research 26, 1421–1430 (2011). https://doi.org/10.1557/jmr.2011.156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.156

Navigation