Skip to main content
Log in

Interfacial delamination cracking shapes and stress states during wedge indentation in a soft-film-on-hard-substrate system—Computational simulation and experimental studies

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The shapes of the interfacial delamination crack and stress states during wedge indentation in a soft-film-on-hard-substrate system were investigated systematically using the three-dimensional (3D) finite element simulation and wedge indentation experiment. In the simulation, a traction–separation law was used to characterize the failure behaviors of the interface. The effects of the wedge indenter tip length and the film thickness on the onset and growth of interfacial delamination were analyzed. It was shown that a two-dimensional (2D) to 3D transition of stress states occurred depending on the ratio of indenter length to film thickness. Furthermore, the interfacial delamination process by wedge indentation was conducted experimentally, and comparisons between the computational and experimental results yielded quantitative good agreement. Finally, a straightforward criterion based on the curvature of the delamination crack front was proposed to indicate the transition of stress states during the interfacial delamination. A guideline was therefore proposed to classify the 2D and 3D stress states for extracting the interface adhesion properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Table II
Fig. 14

Similar content being viewed by others

References

  1. J. Malzbender, J.M.J. den Toonder, A.R. Balkenende, and G. de With: Measuring mechanical properties of coatings: A methodology applied to nano-particle-filled sol-gel coatings on glass. Mater. Sci. Eng., R 36, 47 (2002).

    Article  Google Scholar 

  2. M.D. Kriese, D.A. Boismier, N.R. Moody, and W.W. Gerberich: Nanomechanical fracture-testing of thin films. Eng. Fract. Mech. 61, 1 (1998).

    Article  Google Scholar 

  3. Y.G. Wei and J.W. Hutchinson: Mixed-mode fracture analyses of plastically-deforming adhesive joints. Int. J. Fract. 93, 315 (1998).

    Article  CAS  Google Scholar 

  4. M. Lane: Interface fracture. Annu. Rev. Mater. Res. 33, 29 (2003).

    Article  CAS  Google Scholar 

  5. A.A. Volinsky and W.W. Gerberich: Nanoindentaion techniques for assessing mechanical reliability at the nano-scale. Microelectron. Eng. 69, 519 (2003).

    Article  CAS  Google Scholar 

  6. M.D. Kriese, W.W. Gerberich, and N.R. Moody: Quantitative adhesion measures of multilayer films: Part I. Indentation mechanics. J. Mater. Res. 14, 3007 (1999).

    Article  CAS  Google Scholar 

  7. M.D. Kriese, W.W. Gerberich, and N.R. Moody: Quantitative adhesion measures of multilayer films: Part II. Indentation of W/Cu, W/W, Cr/W. J. Mater. Res. 14, 3019 (1999).

    Article  CAS  Google Scholar 

  8. X. Li and B. Bhushan: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11 (2002).

    Article  CAS  Google Scholar 

  9. D.B. Marshall and A.G. Evans: Measurement of adherence of residually stressed thin films by indentation. I. Mechanics of interface delamination. J. Appl. Phys. 56, 2632 (1984).

    Article  CAS  Google Scholar 

  10. M.V. Swain and J. Menčik: Mechanical property characterization of thin films using spherical tipped indenters. Thin Solid Films 253, 204 (1994).

    Article  CAS  Google Scholar 

  11. A.A. Volinsky, N.R. Moody, and W.W. Gerberich: Interfacial toughness measurements for thin films on substrates. Acta Mater. 50, 441 (2002).

    Article  CAS  Google Scholar 

  12. A.A. Volinsky, J.B. Vella, and W.W. Gerberich: Fracture toughness, adhesion and mechanical properties of low-k dielectric thin films measured by nanoindentation. Thin Solid Films 429, 201 (2003).

    Article  CAS  Google Scholar 

  13. M.R. Begley, D.R. Mumm, A.G. Evans, and J.W. Hutchinson: Analysis of a wedge impression test for measuring the interface toughness between films/coatings and ductile substrates. Acta Mater. 48, 3211 (2000).

    Article  CAS  Google Scholar 

  14. M.P. De Boer and W.W. Gerberich: Microwedge indentation of the thin film fine line-I. Mechanics. Acta Mater. 44, 3169 (1996).

    Article  Google Scholar 

  15. M.P. De Boer and W.W. Gerberich: Microwedge indentation of the thin film fine line-II. Experiment. Acta Mater. 44, 3177 (1996).

    Article  Google Scholar 

  16. M.D. Drory and J.W. Hutchinson: Measurement of the adhesion of a brittle film on a ductile substrate by indentation. Proc. R. Soc. Lond., Ser. A 452, 2319 (1996).

    Article  CAS  Google Scholar 

  17. J.J. Vlassak, M.D. Drory, and W.D. Nix: A simple technique for measuring the adhesion of brittle films to ductile substrates with application to diamond-coated titanium. J. Mater. Res. 12, 1900 (1997).

    Article  CAS  Google Scholar 

  18. K.B. Yeap, K.Y. Zeng, H.Y. Jiang, L. Shen, and D.Z. Chi: Determining interfacial properties of submicron low-k films on Si substrate by using wedge indentation technique. J. Appl. Phys. 101, 123531 (2007).

    Article  Google Scholar 

  19. K.B. Yeap, K.Y. Zeng, and D.Z. Chi: Determining the interfacial toughness of low-k films on Si substrate by wedge indentation: Further studies. Acta Mater. 56, 977 (2008).

    Article  CAS  Google Scholar 

  20. L. Chen, K.B. Yeap, K.Y. Zeng, and G.R. Liu: Finite element simulation and experimental determination of interfacial adhesion properties by wedge indentation. Philos. Mag. 89, 1395 (2009).

    Article  CAS  Google Scholar 

  21. W.Z. Li and T. Siegmund: An analysis of the indentation test to determine the interface toughness in a weakly bonded thin film coating substrate system. Acta Mater. 52, 2989 (2004).

    Article  CAS  Google Scholar 

  22. Y.W. Zhang, K.Y. Zeng, and R. Thampurun: Interfacial delamination generated by indentation in thin film systems—a computational mechanics study. Mater. Sci. Eng., A 319, 893 (2001).

    Article  Google Scholar 

  23. M. Schulze and W.D. Nix: Finite element analysis of the wedge delamination test. Int. J. Solids Struct. 37, 1045 (2000).

    Article  Google Scholar 

  24. V. Tvergaard and J.W. Hutchinson: Toughness of an interface along a thin ductile layer joining elastic solids. Philos. Mag. 89, 641 (1994).

    Article  Google Scholar 

  25. V. Tvergaard and J.W. Hutchinson: Effect of strain-dependent cohesive zone model on predictions of crack growth resistance. Int. J. Solids Struct. 33, 3297 (1996).

    Article  Google Scholar 

  26. C.M. She, Y.W. Zhang, and K.Y. Zeng: A three-dimensional finite element analysis of interface delamination in a ductile film/hard substrate system induced by wedge indentation. Eng. Fract. Mech. 76, 2272 (2009).

    Article  Google Scholar 

  27. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    CAS  Google Scholar 

  28. X.P. Xu and A. Needleman: Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids 42, 1397 (1994).

    Article  Google Scholar 

  29. ABAQUS: User Manual, Version 6.9 (SIMULIA, Providence, RI, 2009).

    Google Scholar 

  30. K.L. Johnson: The correlation of indentation experiments. J. Mech. Phys. Solids 18, 115 (1970).

    Article  Google Scholar 

  31. J.W. Hutchinson and Z. Suo: Mixed mode cracking in layered materials, in Advances in Applied Mechanics, Vol. 29, edited by J.W. Hutchinson and T.Y. Wu (Academic Press, Burlington, 1992), pp. 63–191.

    Google Scholar 

  32. S. Kobayashi: Differential Geometry of Complex VectorBundles (Princeton University Press, Princeton, NJ, 1987), p. 192.

    Book  Google Scholar 

  33. J. Zhu, K.B. Yeap, K.Y. Zeng, and L. Lu: Nanomechanical characterization of sputtered RuO2 thin film on silicon substrate for solid state electronic devices. Thin Solid Films 519, 1914 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National University of Singapore under Academic Research Funds (R265-000-190-112 and R265-000-190-133) and National Natural Science Foundation of China (No. 50805079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Yang Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Yeap, K.B., Zeng, K.Y. et al. Interfacial delamination cracking shapes and stress states during wedge indentation in a soft-film-on-hard-substrate system—Computational simulation and experimental studies. Journal of Materials Research 26, 2511–2523 (2011). https://doi.org/10.1557/jmr.2011.175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.175

Navigation