Skip to main content
Log in

Towards an integrated materials characterization toolbox

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The material characterization toolbox has recently experienced a number of parallel revolutionary advances, foreshadowing a time in the near future when material scientists can quantify material structure evolution across spatial and temporal space simultaneously. This will provide insight to reaction dynamics in four-dimensions, spanning multiple orders of magnitude in both temporal and spatial space. This study presents the authors’ viewpoint on the material characterization field, reviewing its recent past, evaluating its present capabilities, and proposing directions for its future development. Electron microscopy; atom probe tomography; x-ray, neutron and electron tomography; serial sectioning tomography; and diffraction-based analysis methods are reviewed, and opportunities for their future development are highlighted. Advances in surface probe microscopy have been reviewed recently and, therefore, are not included [D.A. Bonnell et al.: Rev. Modern Phys. in Review]. In this study particular attention is paid to studies that have pioneered the synergetic use of multiple techniques to provide complementary views of a single structure or process; several of these studies represent the state-of-the-art in characterization and suggest a trajectory for the continued development of the field. Based on this review, a set of grand challenges for characterization science is identified, including suggestions for instrumentation advances, scientific problems in microstructure analysis, and complex structure evolution problems involving material damage. The future of microstructural characterization is proposed to be one not only where individual techniques are pushed to their limits, but where the community devises strategies of technique synergy to address complex multiscale problems in materials science and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.
FIG. 13.
FIG. 14.
FIG. 15.
FIG. 16.
FIG. 17.
FIG. 18.
FIG. 19.
FIG. 20.
FIG. 21.
FIG. 22.
FIG. 23.
FIG. 24.
FIG. 25.
FIG. 26.
FIG. 27.
FIG. 28.
FIG. 29.
FIG. 30.
FIG. 31.
FIG. 32.
FIG. 33.
FIG. 34.
FIG. 35.
FIG. 36.
FIG. 37.

Similar content being viewed by others

REFERENCES

  1. A.C. Lund and P.W. Voorhees: A quantitative assessment of the three-dimensional microstructure of γ-γ’ alloy. Philos. Mag. 83, 1719 (2003).

    Article  CAS  Google Scholar 

  2. R. Mendoza, J. Alkemper, and P.W. Voorhees: The morphological evolution of dendritic microstructures during coarsening. Metall. Mater. Trans. A 34, 481 (2003).

    Article  Google Scholar 

  3. B.J. Inkson, S. Olsen, D.J. Norris, A.G. O’Neill, and G. Möbus: 3D determination of a MOSFET gate morphology by FIB tomography. Des. Nat. 6, 611 (2004).

    Google Scholar 

  4. B.C. Larson, W. Wang, G.E. Ice, J.D. Budai, and J.Z. Tischler: Three dimensional x-ray structural microscopy with submicrometre resolution. Nature 415, 887 (2002).

    Article  CAS  Google Scholar 

  5. H.F. Poulsen, S.F. Nielsen, E.M. Lauridsen, S. Schmidt, R.M. Suter, U. Lienert, L. Margulies, T. Lorentzen, and D.J. Jensen: Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders. J. Appl. Cryst. 34, 751 (2001).

    Article  CAS  Google Scholar 

  6. R.M. Suter, C.M. Hefferan, S.F. Li, D. Hennessy, C. Xiao, U. Lienert and B. Tieman: Probing microstructure dynamics with x-ray diffraction microscopy. J. Eng. Mater. Trans. ASME, 130, 021007–1 (2008).

    Article  Google Scholar 

  7. A. King, G. Johnson, D. Engelberg, W. Ludwig, and J. Marrow: Observations of intergranular stress-corrosion cracking in a grain-mapped polycrystal. Science 321, 382 (2008).

    Article  CAS  Google Scholar 

  8. M.D. Uchic, M.A. Groeber, D.M. Dimiduk, and J.P. Simmons: 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM. Scr. Mater. 55, 23 (2006).

    Article  CAS  Google Scholar 

  9. J.J.L. Mulders and A.P. Day: Three-dimensional texture analysis. Mater. Sci. Forum 495, 237 (2005).

    Article  Google Scholar 

  10. M.A. Groeber, B.K. Haley, M.D. Uchic, D.M. Dimiduk, and S. Ghosh: 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system. Mater. Charact. 57, 259 (2006).

    Article  CAS  Google Scholar 

  11. J. Alkemper and P.W. Voorhees: Quantitative serial sectioning analysis. J. Microsc. 201, 388 (2001).

    Article  CAS  Google Scholar 

  12. J.E. Spowart: Automated serial sectioning for 3-D analysis of microstructures. Scr. Mater. 55, 5 (2006).

    Article  CAS  Google Scholar 

  13. Viewpoint set on 3D characterization and analysis of materials, Guest editor: G. Spanos: Scr. Mater. 55 (2006).

  14. A.J. Wilkinson, E.E. Clarke, T.B. Britton, P. Littlewood, and P.S. Karamched: High-resolution electron backscatter diffraction: An emerging tool for studying local deformation. J. Strain Anal. Eng. Des. 45, 365 (2010).

    Article  Google Scholar 

  15. A.J. Wilkinson, G. Meaden, and D.J. Dingley: High resolution mapping of strains and rotations using electron backscatter diffraction. Mater. Sci. Technol. 22, 1271 (2006).

    Article  CAS  Google Scholar 

  16. A.J. Wilkinson, G. Meaden, and D.J. Dingley: High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity. Ultramicroscopy 106, 307 (2006).

    Article  CAS  Google Scholar 

  17. H.F. Poulsen: Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycrystals and their Dynamics (Springer-Verlag, Berlin Heidelberg, 2004).

    Book  Google Scholar 

  18. G.E. Ice and B.C. Larson: 3D x-ray crystal microscope. Adv. Eng. Mater. 2, 643 (2000).

    Article  CAS  Google Scholar 

  19. W.J. Liu, G.E. Ice, B.C. Larson, W.G. Yang, J.Z. Tischler, and J.D. Budai: The three-dimensional x-ray crystal microscope: A new tool for materials characterization. Metall. Mater. Trans. A 35A, 1963 (2004).

    Article  CAS  Google Scholar 

  20. B.F. McEwen, C. Renken, M. Marko, C. Mannella: Principles and practice in electron tomography. Methods Cell Biol. 89, 129, (2008).

    Article  Google Scholar 

  21. P.A. Midgley and R.E. Dunin-Borkowski: Electron tomography and holography in materials science. Nat. Mater. 8, 271 (2009).

    Article  CAS  Google Scholar 

  22. P. Ferreira, E.A. Stach, and K. Mitsuishi: In situ transmission electron microscopy. MRS Bull. 33, 93 (2008).

    Article  Google Scholar 

  23. C. Hetherington: Aberration correction for TEM. Mater. Today 7, 50 (2004).

    Article  Google Scholar 

  24. O.L. Krivanek, G.J. Corbin, N. Dellby, B.F. Elston, R.J. Keyse, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, and J.W. Woodruff: An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179 (2008).

    Article  CAS  Google Scholar 

  25. H. Rose: Aberration correction in electron microscopy. Int. J. Mater. Res. 97, 885 (2006).

    Article  CAS  Google Scholar 

  26. Y. Zhu and J. Wall: Aberration-corrected electron microscopes at Brookhaven Microscopes at Brookhaven National Laboratory. Advances in Imaging and Electron Physics 153, 481 (2008).

    Article  CAS  Google Scholar 

  27. The Otto Scherzer special issue on aberration-corrected electron microscopy. Guest editors: D.J. Smith and U. Dahmen: Microsc. Microanal. 16, (2010).

  28. M. Chergui and A.H. Zewail: Electron and x-ray methods of ultrafast structural dynamics: Advances and applications. ChemPhysChem. 10, 28 (2009).

    Article  CAS  Google Scholar 

  29. B.W. Reed, M.R. Armstrong, N.D. Browning, G.H. Campbell, J.E. Evans, T. LaGrange, and D.J. Masiel: The evolution of ultrafast electron microscope instrumentation. Microsc. Microanal. 15, 272 (2009).

    Article  CAS  Google Scholar 

  30. T.F. Kelly and M.K. Miller: Invited review article: Atom probe tomography. Rev. Sci. Instrum. 78, 031101 (2007).

    Article  CAS  Google Scholar 

  31. M.K. Miller: Atom Probe Tomography: Analysis at the Atomic Level (Kluwer Academic/Plenum Publishers, New York, 2000).

    Book  Google Scholar 

  32. B.G. Clark, P. Ferreira, and I.M. Robertson: Microsc. Res. Tech. 72, 121–292 (2009).

    Article  Google Scholar 

  33. In-Situ Electron Microscopy of Materials, edited by P. J. Ferreira, I.M. Robertson, G. Dehm, and H. Saka Mater. Res. Soc. Symp. Proc. 907E, Warrendale, PA, 2006).

  34. F. Meisenkothen, R. Wheeler, M.D. Uchic, R.D. Kerns, and F.J. Scheltens: Electron channeling: A problem for x-ray microanalysis in materials science. Microsc. Microanal. 15, 83 (2009).

    Article  CAS  Google Scholar 

  35. M.D. Uchic: 3D microstructural characterization: Methods, analysis, and applications. JOM 58, 24 (2006).

    Article  Google Scholar 

  36. K. Thornton and H.F. Poulsen: Three-dimensional materials science: An intersection of three-dimensional reconstructions and simulations. MRS Bull. 33, 587 (2008).

    Article  Google Scholar 

  37. M.L. Taheri, N.D. Browning, and J. Lewellena: Symposium on ultrafast electron microscopy and ultrafast science. Microsc. Microanal. 15, 271 (2009).

    Article  CAS  Google Scholar 

  38. D.N. Seidman: Three dimensional atom probe tomography: Advances and applications. Ann. Rev. Mater. Res. 37, 137 (2007).

    Article  CAS  Google Scholar 

  39. M. Tanaka, S. Sadamatsu, H. Nakamura, K. Higashida, G. Liu, and I.M. Robertson: Sequential multiplication of dislocation sources along a crack front revealed by HVEM-tomography. J. Mater. Res. 26, 508 (2011).

    Article  CAS  Google Scholar 

  40. M. Haider, H. Rose, S. Uhlemann, B. Kabius, and K. Urban: Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J. Electron Microsc. (Tokyo). 47, 395 (1998).

    Article  CAS  Google Scholar 

  41. H. Rose: Prospects for realizing a sub-Å sub-eV resolution EFTEM. Ultramicroscopy 78, 13 (1999).

    Article  CAS  Google Scholar 

  42. M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, and K. Urban: A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 53 (1998).

    Article  CAS  Google Scholar 

  43. M. Haider, H. Müller, S. Uhlemann, J. Zach, U. Loebau, and R. Hoeschen: Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM. Ultramicroscopy 108, 167 (2008).

    Article  CAS  Google Scholar 

  44. B. Kabius and H. Rose: Novel Aberration Correction Concepts (Elsevier, 2008).

    Google Scholar 

  45. P. Baum and A.H. Zewail: Attosecond electron pulses for 4D diffraction and microscopy. Proc. Natl. Acad. Sci. U.S.A. 104, 18409 (2007).

    Article  CAS  Google Scholar 

  46. T. LaGrange, M.R. Armstrong, K. Boyden, C.G. Brown, G.H. Campbell, J.D. Colvin, W.J. DeHope, A.M. Frank, D.J. Gibson, F.V. Hartemann, J.S. Kim, W.E. King, B.J. Pyke, B.W. Reed, M.D. Shirk, R.M. Shuttlesworth, B.C. Stuart, B.R. Torralva, and N.D. Browning: Single-shot dynamic transmission electron microscopy. Appl. Phys. Lett. 89, 044105 (2006).

    Article  CAS  Google Scholar 

  47. S.A. Hilbert, C. Uiterwaal, B. Barwick, H. Batelaan, and A.H. Zewail: Temporal lenses for attosecond and femtosecond electron pulses. Proc. Natl. Acad. Sci. U.S.A. 106, 10558 (2009).

    Article  CAS  Google Scholar 

  48. http://www.protochips.com/ and http://www.hummingbirdscientific.com/ (2009).

  49. M.A. Haque and M.T.A. Saif: Microscale materials testing using MEMS actuators. J. Microelectromech. Syst. 10, 146 (2001).

    Article  Google Scholar 

  50. K. Hattar, J. Han, M.T.A. Saif, and I.M. Robertson: In situ transmission electron microscopy observations of toughening mechanisms in ultra-fine grained columnar aluminum thin films. J. Mater. Res. 20, 1869 (2005).

    Article  CAS  Google Scholar 

  51. H.D. Espinosa, Y. Zhu, and N. Moldovan: Design and operation of a MEMS-based material testing system for nanomechanical characterization. J. Microelectromech. Syst. 16, 1219 (2007).

    Article  Google Scholar 

  52. http://www.cgl.ucsf.edu/chimera/ (2009).

  53. J. Frank: Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell (Springer Science and Business Media, LLC., New York, 2006).

    Book  Google Scholar 

  54. S. Subramaniam and J.L. Milne: Three-dimensional electron microscopy at molecular resolution. Annu. Rev. Biophys. Biomol. Struct. 33, 141 (2004).

    Article  CAS  Google Scholar 

  55. J.S. Lengyel, J.L. Milne, and S. Subramaniam: Electron tomography in nanoparticle imaging and analysis. Nanomedicine 3, 125 (2008).

    Article  CAS  Google Scholar 

  56. B.F. McEwen and M. Marko: The emergence of electron tomography as an important tool for investigating cellular ultrastructure. J. Histochem. Cytochem. 49, 553 (2001).

    Article  CAS  Google Scholar 

  57. K.J. Batenburg, S. Bals, J. Sijbers, C. Kubel, P.A. Midgley, J.C. Hernandez, U. Kaiser, E.R. Encina, E.A. Coronado, and G. Van Tendeloo: 3D imaging of nanomaterials by discrete tomography. Ultramicroscopy 109, 730 (2009).

    Article  CAS  Google Scholar 

  58. J.C. Gonzalez, J.C. Hernandez, M. Lopez-Haro, E. Del Rio, J.J. Delgado, A.B. Hungria, S. Trasobares, S. Bernal, P.A. Midgley, and J.J. Calvino: 3D characterization of gold nanoparticles supported on heavy-metal oxide catalysts by HAADF-STEM electron tomography. Angew. Chem. Int. Ed. 48, 5313 (2009).

    Article  CAS  Google Scholar 

  59. P.A. Midgley, M. Weyland, T.J.V. Yates, R.E. Dunin-Borkowski, and L. Laffont: Nanoscale analysis of three-dimensional structures by electron tomography. Scr. Mater. 55, 29 (2006).

    Article  CAS  Google Scholar 

  60. G. Mobus and B.J. Inkson: Three-dimensional reconstruction of buried nanoparticles by element-sensitive tomography based on inelastically scattered electrons. Appl. Phys. Lett. 79, 1369 (2001).

    Article  CAS  Google Scholar 

  61. E.P.W. Ward, T.J.V. Yates, J.J. Fernandez, D.E.W. Vaughan, and P.A. Midgley: Three-dimensional nanoparticle distribution and local curvature of heterogeneous catalysts revealed by electron tomography. J. Phys. Chem. C. 111, 11501 (2007).

    Article  CAS  Google Scholar 

  62. R.J.T. Houk, B.W. Jacobs, F.E. Gabaly, N.N. Chang, A.A. Talin, D.D. Graham, S.D. House, I.M. Robertson, M.D. Allendorf: Silver cluster formation, dynamics, and chemistry in metal-organic frameworks. Nano Lett. 9, 3413 (2009).

    Article  CAS  Google Scholar 

  63. I. Arslan, T.J.V. Yates, N.D. Browning, and P.A. Midgley: Embedded nanostructures revealed in three dimensions. Science 309, 2195 (2005).

    Article  CAS  Google Scholar 

  64. M. Weyland, P.A. Midgley, and J.M. Thomas: Electron tomography of nanoparticle catalysts on porous supports: A new technique based on Rutherford scattering. J. Phys. Chem. B 105, 7882 (2001).

    Article  CAS  Google Scholar 

  65. L.C. Gontard, R.E. Dunin-Borkowski, R.K.K. Chong, D. Ozkaya, and P.A. Midgley: Electron tomography of Pt nanocatalyst particles and their carbon support. J. Phys. Conf. Ser. 26, 203 (2006).

    Article  CAS  Google Scholar 

  66. J.S. Barnard, J. Sharp, J.R. Tong, and P.A. Midgley: High-resolution three-dimensional imaging of dislocations. Science 313, 319 (2006).

    Article  CAS  Google Scholar 

  67. J.S. Barnard, J. Sharp, J.R. Tong, and P.A. Midgley: Weak-beam dark-field electron tomography of dislocations in GaN. J. Phys. Conf. Ser. 26, 247 (2006).

    Article  CAS  Google Scholar 

  68. J.H. Sharp, J.S. Barnard, K. Kaneko, K. Higashida, and P.A. Midgley: Dislocation tomography made easy: A reconstruction from ADF STEM images obtained using automated image shift correction. J. Phys. Conf. Ser. 126, 012013 (2008).

    Article  CAS  Google Scholar 

  69. M. Tanaka, K. Higashida, K. Kaneko, S. Hata, and M. Mitsuhara: Crack tip dislocations revealed by electron tomography in silicon single crystal. Scr. Mater. 59, 901 (2008).

    Article  CAS  Google Scholar 

  70. C. Phatak, M. Beleggiab, and M.D. Graef: Vector field electron tomography of magnetic materials: Theoretical development. Ultramicroscopy 108, 503 (2008).

    Article  CAS  Google Scholar 

  71. C. Phatak, M.D. Graef, A. Petford-Long, M. Tanase, and A. Imre: Reconstruction of 3D magnetic induction using Lorentz TEM. Microsc. Microanal. 14, 1055 (2008).

    Google Scholar 

  72. C. Phatak, M. Tanase, A.K. Petford-Long, and M. De Graef: Determination of magnetic vortex polarity from a single Lorentz Fresnel image. Ultramicroscopy 109, 264 (2009).

    Article  CAS  Google Scholar 

  73. W. Baumeister: Electron tomography: Towards visualizing the molecular organization of the cytoplasm. Curr. Opin. Struct. Biol. 12, 679 (2002).

    Article  CAS  Google Scholar 

  74. P.A. Midgley and M. Weyland: 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413 (2003).

    Article  CAS  Google Scholar 

  75. I. Arslan, J.R. Tong, and P.A. Midgley: Reducing the missing wedge: High-resolution dual axis tomography of inorganic materials. Ultramicroscopy 106, 994 (2006).

    Article  CAS  Google Scholar 

  76. I. Arslan, J.C. Walmsley, E. Rytter, E. Bergene, and P.A. Midgley: Toward three-dimensional nanoengineering of heterogeneous catalysts. J. Am. Chem. Soc. 130, 5716 (2008).

    Article  CAS  Google Scholar 

  77. H. Friedrich, P.E. De Jongh, A.J. Verkleij, and K.P. De Jong: Electron tomography for heterogeneous catalysts and related nanostructured materials. Chem. Rev. 109, 1613 (2009).

    Article  CAS  Google Scholar 

  78. A.B. Hungria, D. Eder, A.H. Windle, and P.A. Midgley: Visualization of the three-dimensional microstructure of TiO2 nanotubes by electron tomography. Catal. Today 143, 225 (2009).

    Article  CAS  Google Scholar 

  79. J.C. Hernández-Garrido, K. Yoshida, P.L. Gai, E.D. Boyes, C.H. Christensen and P.A. Midgley: The location of gold nanoparticles on titania: A study by high resolution aberration-corrected electron microscopy and 3D electron tomography. Catal. Today 160, 165 (2011).

    Article  CAS  Google Scholar 

  80. K. Yoshida, Y.H. Ikuhara, S. Takahashi, T. Hirayama, T. Saito, S. Sueda, N. Tanaka, and P.L. Gai: The three-dimensional morphology of nickel nanodots in amorphous silica and their role in high-temperature permselectivity for hydrogen separation. Nanotechnology 20, 315703 (2009).

    Article  CAS  Google Scholar 

  81. M. Weyland, T.J.V. Yates, R.E. Dunin-Borkowski, L. Laffont, and P.A. Midgley: Nanoscale analysis of three-dimensional structures by electron tomography. Scr. Mater. 55, 29 (2006).

    Article  CAS  Google Scholar 

  82. V. Ortalan, M. Herrera, D.G. Morgan, N.D. Browning: Application of image processing to STEM tomography of low contrast materials. Ultramicroscopy 110, 67 (2009).

    Article  CAS  Google Scholar 

  83. L.C. Gontard, R.E. Dunin-Borkowski, and D. Ozkaya: Three-dimensional shapes and spatial distributions of Pt and PtCr catalyst nanoparticles on carbon black. J. Microsc. 232, 248 (2008).

    Article  CAS  Google Scholar 

  84. K. Jarausch, P. Thomas, D.N. Leonard, R. Twesten, and C.R. Booth: Four-dimensional STEM-EELS: Enabling nano-scale chemical tomography. Ultramicroscopy 109, 326 (2009).

    Article  CAS  Google Scholar 

  85. A. Yurtsever, M. Weyland, and D.A. Muller: Three-dimensional imaging of nonspherical silicon nanoparticles embedded in silicon oxide by plasmon tomography. Appl. Phys. Lett. 89, 151920 (2006).

    Article  CAS  Google Scholar 

  86. K. Kaneko, R. Nagayama, K. Inoke, E. Noguchi, and Z. Horita: Application of three-dimensional electron tomography using bright-field imaging: Two types of Si-phases in Al-Si alloy. Sci. Technol. Adv. Mater. 7, 726 (2006).

    Article  CAS  Google Scholar 

  87. M. Tanaka, M. Honda, M. Mitsuhara, S. Hata, K. Kaneko, and K. Higashida: Three-dimensional observation of dislocations by electron tomography in a silicon crystal. Mater. Trans. 49, 1953 (2008).

    Article  CAS  Google Scholar 

  88. G.S. Liu and I.M. Robertson: Three-dimensional visualization of dislocation-precipitate interactions in a Al-4Mg-0.3Sc alloy using weak-beam dark-field electron tomography. J. Mater. Res. 26, 514, (2011).

    Article  CAS  Google Scholar 

  89. S. Hata, K. Kimura, H. Gao, S. Matsumura, M. Doi, T. Moritani, J.S. Barnard, J.R. Tong, J.H. Sharp, and P.A. Midgley: Electron tomography imaging and analysis of g and g' domains in Ni-based superalloys. Adv. Mater. (Deerfield Beach Fla.) 20, 1905 (2008).

    Article  CAS  Google Scholar 

  90. S.J. Lade, D. Paganin, and M.J. Morgan: 3-D Vector tomography of Doppler-transformed fields by filtered-backprojection. Opt. Commun. 253, 382 (2005).

    Article  CAS  Google Scholar 

  91. C. Phatak, E. Humphrey, M.D. Graef, and A.K. Petford-Long: Determination of the 3-D magnetic vector potential using Lorentz transmission electron microscopy. Microsc. Microanal. 15, 134 (2009).

    Article  Google Scholar 

  92. V. Stolojan, R.E. Dunin-Borkowski, M. Weyland, and P.A. Midgley: Three-dimensional magnetic fields of nanoscale elements determined by electron-holographic tomography, in Electron Microscopy and Analysis 2001 (IOP Publishing, Bristol, UK, 2001).

    Google Scholar 

  93. S. Bals, K.J. Batenburg, D. Liang, O. Lebedev, G. Van Tendeloo, A. Aerts, J.A. Martens, and C.E.A. Kirschhock: Quantitative three-dimensional modeling of zeotile through discrete electron tomography. J. Am. Chem. Soc. 131, 4769 (2009).

    Article  CAS  Google Scholar 

  94. J.R. Jinschek, K.J. Batenburg, H.A. Calderon, R. Kilaas, V. Radmilovic, and C. Kisielowski: 3-D reconstruction of the atomic positions in a simulated gold nanocrystal based on discrete tomography: Prospects of atomic resolution electron tomography. Ultramicroscopy 108, 589 (2008).

    Article  CAS  Google Scholar 

  95. J. Tong, I. Arslan, and P. Midgley: A novel dual-axis iterative algorithm for electron tomography. J. Struct. Biol. 153, 55 (2006).

    Article  Google Scholar 

  96. K.J. Batenburg and J. Sijbers: Generic iterative subset algorithms for discrete tomography. Discrete Appl. Math. 157, 438 (2009).

    Article  Google Scholar 

  97. K.J. Batenburg and J. Sijbers: Adaptive thresholding of tomograms by projection distance minimization. Pattern Recognit. 42, 2297 (2009).

    Article  Google Scholar 

  98. Z. Saghi, X. Xu, and G. Mobus: Model based atomic resolution tomography. J. Appl. Phys. 106, 024304 (2009).

    Article  CAS  Google Scholar 

  99. M. Bar Sadan, L. Houben, S.G. Wolf, A. Enyashin, G. Seifert, R. Tenne, and K. Urban: Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures. Nano Lett. 8, 891 (2008).

    Article  CAS  Google Scholar 

  100. B. Freitag and C. Kisielowski: Determining Resolution in the Transmission Electron Microscope: Object-Defined Resolution Below 0.5 Å. (Springer-Verlag, Berlin Heidelberg, 2008).

    Google Scholar 

  101. R. Alani and M. Pan: In situ transmission electron microscopy studies and real-time digital imaging. J. Microsc. 203, 128 (2001).

    Article  CAS  Google Scholar 

  102. M.R. Armstrong, K. Boyden, N.D. Browning, G.H. Campbell, J.D. Colvin, W.J. DeHope, A.M. Frank, D.J. Gibson, F. Hartemann, J.S. Kim, W.E. King, T.B. LaGrange, B.J. Pyke, B.W. Reed, R.M. Shuttlesworth, B.C. Stuart, and B.R. Torralva: Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy. Ultramicroscopy 107, 356 (2007).

    Article  CAS  Google Scholar 

  103. D.J. Flannigan, V.A. Lobastov, and A.H. Zewail: Controlled nanoscale mechanical phenomena discovered with ultrafast electron microscopy. Angew. Chem. Int. Ed. 46, 9206 (2007).

    Article  CAS  Google Scholar 

  104. T. Jau, Y. Ding-Shyue, and A.H. Zewail: Ultrafast electron crystallography: 3. Theoretical modeling of structural dynamics. J. Phys. Chem. C 111, 8957 (2007).

    Article  CAS  Google Scholar 

  105. M.T. Seidel, S. Chen, and A.H. Zewail: Ultrafast electron crystallography. 2. Surface adsorbates of crystalline fatty acids and phospholipids. J. Phys. Chem. C 111, 4920 (2007).

    Article  CAS  Google Scholar 

  106. D.S. Yang, N. Gedik, and A.H. Zewail: Ultrafast electron crystallography. 1. Nonequilibrium dynamics of nanometer-scale structures. J. Phys. Chem. C 111, 4889 (2007).

    Article  CAS  Google Scholar 

  107. D. Shorokhov and A.H. Zewail: 4D electron imaging: Principles and perspectives. Phys. Chem. Chem. Phys. 10, 2879 (2008).

    Article  CAS  Google Scholar 

  108. O. Bostanjoglo and D. Otte: High-speed electron microscopy of nanocrystallization in Al-Ni films by nanosecond laser pulses. Phys. Status Solidi A Appl. Res. 150, 163 (1995).

    Article  CAS  Google Scholar 

  109. O. Bostanjoglo, R.P. Tornow, and W. Tornow: Nanosecond-exposure electron microscopy of laser-induced phase transformations. Ultramicroscopy 21, 367 (1987).

    Article  CAS  Google Scholar 

  110. G.H. Campbell, T.B. LaGrange, W.E. King, J.D. Colvin, A. Ziegler, N.D. Browning, H. Kleinschmidt, and O. Bostanjoglo: The HCP to BCC phase transformation in Ti characterized by nanosecond electron microscopy, in Proceedings of the Solid-Solid Phase Transformations in Inorganic Materials 2005; Vol. 2, edited by J.M. Howe, D.E. Laughlin, J.K. Lee, U. Dahmen, and W.A. Soffa (Mater. Res. Soc. Symp. Proc. Warrendale, PA, 2005) p. 443.

    CAS  Google Scholar 

  111. T. LaGrange, G.H. Campbell, J.D. Colvin, W.E. King, N.D. Browning, M.R. Armstrong, B.W. Reed, J.S. Kim, and B.C. Stuart: In-situ studies of the martensitic transformation in Ti thin films using the dynamic transmission electron microscope (DTEM), in In-Situ Electron Microscopy of Materials, edited by P.J. Ferreira, I.M. Robertson, G. Dehm, and H. Saka (Mater. Res. Soc. Proc. 907E. Warrendale, PA, 2005) 0907-MM05-02.l-6.

  112. M.L. Taheri, B.W. Reed, T.B. LaGrange, and N.D. Browning: In situ laser synthesis of si nanowires in the dynamic TEM. Small 4, 2187 (2008).

    Article  CAS  Google Scholar 

  113. H. Saka (ed.), Proc. of the Int. Symp. on In-Situ Electron Microscopy, Nagoya, 2003, Philos. Mag. 84, 25/26 (2004).

    Google Scholar 

  114. Special Focus Issue—In-situ Transmission Electron Microscopy. Eds. I.M. Robertson, M. Kirk, U. Messerschmidt, J. Yang, and R. Hull: In situ electron microscopy, J. Mater. Res. 20, (2005).

  115. R. Sharma, P.A. Crozier, and M.M.J. Treacy: Dynamic in situ electron microscopy as a tool to meet the challenges of the nanoworld. NSF Workshop Report, Tempe, Arizona, January 3–6, 2006 (2006)}.

    Google Scholar 

  116. P.B. Hirsch, R.W. Horne and M.J. Whelan: Direct observations of arrangement and motion of dislocations in aluminium. Philos. Mag. 1, 677 (1956).

    Article  CAS  Google Scholar 

  117. C.W. Allen: In situ ion- and electron-irradiation effects studies in transmission electron microscopes. Ultramicroscopy 56, 200 (1994).

    Article  CAS  Google Scholar 

  118. C.B. Carter and D.L. Kohlstedt: Electron irradiation damage in natural quartz grains. Phys. Chem. Miner. 7, 110 (1981).

    Article  Google Scholar 

  119. D.F. Pedraza and J. Koike: Dimensional changes in grade H-451 nuclear graphite due to electron irradiation. Carbon 32, 727 (1994).

    Article  CAS  Google Scholar 

  120. B.W. Smith and D.E. Luzzi: Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 90, 3509 (2001).

    Article  CAS  Google Scholar 

  121. T. Nagase and Y. Umakoshi: Electron irradiation induced crystallization of supercooled liquid in Zr based alloys. Mater. Trans. 48, 151 (2007).

    Article  CAS  Google Scholar 

  122. S. Sepulveda-Guzman, N. Elizondo-Villarreal, D. Ferrer, A. Torres-Castro, X. Gao, J.P. Zhou, and M. Jose-Yacaman: In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope. Nanotechnology 18, 335604 (2007).

  123. X.T. Zu, F.R. Wan, S. Zhu, and L.M. Wang: Irradiation-induced martensitic transformation of TiNi shape memory alloys. Physica B 351, 59 (2004).

    Article  CAS  Google Scholar 

  124. I. Jencic, M.W. Bench, I.M. Robertson, and M.A. Kirk: Electron-beam-induced crystallization of isolated amorphous regions in Si, Ge, GaP, and GaAs. J. Appl. Phys. 78, 974 (1995).

    Article  CAS  Google Scholar 

  125. E.P. Butler: In situ experiments in the transmission electron microscope. Rep. Prog. Phys. 42, 833 (1979).

    Article  CAS  Google Scholar 

  126. D.K. Dewald, T.C. Lee, I.M. Robertson, and H.K. Birnbaum: Dislocation structures ahead of advancing cracks. Metall. Mater. Trans. A, 21, 2411 (1990).

    Article  Google Scholar 

  127. M. Ignat, F. Louchet, and J. Pelissier: Deformation of a Ni-Based superalloy: Compression creep and in situ experiments, in International Series on the Strength and Fracture of Materials and Structures (Pergamon Press, Montreal, Quebec, 1986).

    Google Scholar 

  128. P. Castany, F. Pettinari-Sturmel, J. Crestou, J. Douin, and A. Coujou: Experimental study of dislocation mobility in a Ti-6Al-4V alloy. Acta Mater. 55, 6284 (2007).

    Article  CAS  Google Scholar 

  129. P. Castany, F. Pettinari-Sturmel, J. Douin, and A. Coujou: In situ transmission electron microscopy deformation of the titanium alloy Ti-6Al-4V: Interface behaviour. Mater. Sci. Eng. A 483 /, 719 (2008).

    Article  CAS  Google Scholar 

  130. L.L.M. Hsiung and T.G. Nieh: In situ TEM study of interface sliding and migration of an ultrafine lamellar structure, in Mechanical Properties of Nanostructured Materials—Experiments and Modeling, edited by J.G. Swadener, E. Lilleodden, S. Asif, D. Bahr, and D. Weygand (Mater. Res. Soc. Symp. Proc. 880E, Warrendale, PA, 2005), BB1.9.

  131. I.M. Robertson, P.J. Ferreira, G. Dehm, R. Hull, and E.A. Stach: Visualizing the behavior of dislocations—seeing is believing. MRS Bull. 33, 122 (2008).

    Article  Google Scholar 

  132. C.E. Carlton and P.J. Ferreira: Dislocation motion-induced strain in nanocrystalline materials: Overlooked considerations. Mater. Sci. Eng. A 486, 672 (2008).

    Article  CAS  Google Scholar 

  133. J. Deneen, W.M. Mook, A. Minor, W.W. Gerberich, and C.B. Carter: In situ deformation of silicon nanospheres. J. Mater. Sci. 41, 4477 (2006).

    Article  CAS  Google Scholar 

  134. A. Radisic, F.M. Ross, and P.C. Searson: In situ study of the growth kinetics of individual island electrodeposition of copper. J. Phys. Chem. B 110, 7862 (2006).

    Article  CAS  Google Scholar 

  135. M.J. Williamson, R.M. Tromp, P.M. Vereecken, R. Hull, and F.M. Ross: Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater. 2, 532 (2003).

    Article  CAS  Google Scholar 

  136. A. Radisic, P.M. Vereecken, J.B. Hannon, P.C. Searson, and F.M. Ross: Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett. 6, 238 (2006).

    Article  CAS  Google Scholar 

  137. T.C. Lee, D.K. Dewald, J.A. Eades, I.M. Robertson, and H.K. Birnbaum: An environmental cell transmission electron microscope. Rev. Sci. Instrum. 62, 1438 (1991).

    Article  CAS  Google Scholar 

  138. I.M. Robertson and D. Teter: Controlled environment transmission electron microscopy. J. Microsc. Res. Tech. 42, 260 (1998).

    Article  CAS  Google Scholar 

  139. E.D. Boyes, P.L. Gai, and L.G. Hanna: Controlled environment [IECELL] TEM for dynamic in-situ reaction studies with HREM lattice imaging, in In Situ Electron and Tunneling Microscopy of Dynamic Processes, edited by R. Sharma, P.L. Gai, M. Gajdardziska-Josifovska, R. Sinclair, and L.J. Whitman (Mater. Res. Soc. Proc. 404, Pittsburgh, PA, 1996) p. 53.

    CAS  Google Scholar 

  140. P.L. Gai: Development of wet environmental TEM (Wet-ETEM) for in situ studies of liquid-catalyst reactions on the nanoscale. Microsc. Microanal. 8, 21 (2002).

    Article  CAS  Google Scholar 

  141. P.L. Gai, R. Sharma, and F.M. Ross: Environmental (S)TEM studies of gas-liquid-solid interactions under reaction conditions. MRS Bull. 33, 107 (2008).

    Article  CAS  Google Scholar 

  142. C.W. Allen, L.L. Funk, and E.A. Ryan: New instrumentation in Argonne’s HVEM-Tandem Facility: Expanded capability for in situ ion beam studies, in lon-Solid Interactions for Materials Modification and Processing, edited by D.B. Poker, D. Ila, Y.-T. Cheng, L.R. Harriott, and T.W. Sigmon (Mater. Res. Soc. Proc. 396, Pittsburgh, PA, 1996) p. 641.

    CAS  Google Scholar 

  143. C.W. Allen and E.A. Ryan: In situ ion-beam research in Argonne’s intermediate voltage electron microscope, in Microstructure Evolution During Irradiation, edited by I.M. Robertson, G.S. Was, L.W. Hobbs, and T. Diaz de la Rubia (Mater. Res. Soc. Symp. Proc. 439, Pittsburgh, PA, 1997), p. 277.

    CAS  Google Scholar 

  144. J.A. Hinks: A review of transmission electron microscopes with in situ ion irradiation. Nucl. Instrum. Meth. B 267, 3652 (2009).

    Article  CAS  Google Scholar 

  145. J. Drucker, R. Sharma, K. Weiss, B.L. Ramakrishna, and J. Kouvetakis: In situ real time observation of chemical vapor deposition using an environmental transmission electron microscope, in In Situ Electron and Tunneling Microscopy of Dynamic Processes, edited by R. Sharma, P.L. Gai, M. Gajdardziska-Josifovska, R. Sinclair, and L.J. Whitman (Mater. Res. Soc. Proc. 404. Pittsburgh, PA, 1996) p. 75.

    CAS  Google Scholar 

  146. M. Takeguchi, Y. Wu, M. Tanaka, and K. Furuya: In situ UHV-TEM observation of the direct formation of Pd2Si islands on Si(111) surfaces at high temperature. Appl. Surf. Sci. 159 /, 225 (2000).

    Article  Google Scholar 

  147. P.L. Gai and E.D. Boyes: Advances in atomic resolution in situ environmental transmission electron microscopy and 1A aberration corrected in situ electron microscopy. Microsc. Res. Tech. 72, 153 (2009).

    Article  CAS  Google Scholar 

  148. I.M. Robertson, H.K. Birnbaum, and P. Sofronis: Hydrogen effects on plasticity, in Dislocations in Solids, edited by J.P. Hirth and L. Kubin (Elsevier, 2009).

    Google Scholar 

  149. P. Li, J. Liu, N. Nag, and P.A. Crozier: In situ synthesis and characterization of Ru promoted Co/Al2O3 Fischer-Tropsch catalysts. Appl. Catal. A Gen. 307, 212 (2006).

    Article  CAS  Google Scholar 

  150. P. Li, J. Liu, N. Nag, and P.A. Crozier: In situ preparation of Ni-Cu/TiO2 bimetallic catalysts. J. Catal. 262, 73 (2009).

    Article  CAS  Google Scholar 

  151. A. Gamalski, E.S. Moore, M.M.J. Treacy, R. Sharma, and P. Rez: Diffusion-gradient-induced length instabilities in the catalytic growth of carbon nanotubes. Appl. Phys. Lett. 95, 233109 (2009).

    Article  CAS  Google Scholar 

  152. R. Sharma, P. Rez, and M.M.J. Treacy: Direct observations of the growth of carbon nanotubes using in situ transmission electron microscopy. J. Surf. Sci. Nanotechnol. 4, 460 (2006).

    Article  CAS  Google Scholar 

  153. O. Bostanjoglo and P. Thomsen-Schmidt: Time-resolved TEM of laser-induced structural changes in GeTe films, Appl. Surf. Sci. 46, 392 (1990).

    Article  CAS  Google Scholar 

  154. T. LaGrange, G.H. Campbell, B. Reed, M. Taheri, J.B. Pesavento, J.S. Kim, and N.D. Browning: Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscope (DTEM). Ultramicroscopy 108, 1441 (2008).

    Article  CAS  Google Scholar 

  155. F. Carbone, B. Barwick, K. Oh-Hoon, P. Hyun Soon, J.S. Baskin, and A.H. Zewail: EELS femtosecond resolved in 4D ultrafast electron microscopy. Chem. Phys. Lett. 468, 107 (2009).

    Article  CAS  Google Scholar 

  156. F. Carbone, K. Oh-Hoon, and A.H. Zewail: Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy. Science 325, 181 (2009).

    Article  CAS  Google Scholar 

  157. A. Gahlmann, P. Sang Tae, and A.H. Zewail: Ultrashort electron pulses for diffraction, crystallography and microscopy: Theoretical and experimental resolutions. Phys. Chem. Chem. Phys. 10, 2894 (2008).

    Article  CAS  Google Scholar 

  158. H.S. Park, J.S. Baskin, B. Barwick, O.-H. Kwon, and A.H. Zewail: 4D ultrafast electron microscopy: Imaging of atomic motions, acoustic resonances, and moire fringe dynamics. Ultramicroscopy 110, 7 (2009).

    Article  CAS  Google Scholar 

  159. A. Yurtsever and A.H. Zewail: 4D Nanoscale diffraction observed by convergent-beam ultrafast electron microscopy. Science 326, 708 (2009).

    Article  CAS  Google Scholar 

  160. M.R. Gilbert, Z. Yao, M.A. Kirk, M.L. Jenkins, and S.L. Dudarev: Vacancy defects in Fe: Comparison between simulation and experiment. J. Nucl. Mater. 386, 36 (2009).

    Article  CAS  Google Scholar 

  161. B.W. Reed, T. LaGrange, R.M. Shuttlesworth, D.J. Gibson, G.H. Campbell, and N.D. Browning: Solving the accelerator-condenser coupling problem in a nanosecond dynamic transmission electron microscope. Rev. Sci. Instrum. 81, 053706 (2010).

    Article  CAS  Google Scholar 

  162. M.K. Miller and R.G. Forbes: Atom probe tomography. Mater. Charact. 60, 461 (2009).

    Article  CAS  Google Scholar 

  163. G.L. Kellogg and T.T. Tsong: Pulsed-laser atom-probe field-ion microscopy. J. Appl. Phys. 51, 1184 (1980).

    Article  CAS  Google Scholar 

  164. P. Bas, A. Bostel, B. Deconihout, and D. Blavette: A general protocol for the reconstruction of 3d atom-probe data. Appl. Surf. Sci. 87, 298 (1995).

    Article  Google Scholar 

  165. B. Gault, F. de Geuser, L.T. Stephenson, M.P. Moody, B.C. Muddle, and S.P. Ringer: Estimation of the reconstruction parameters for atom probe tomography. Microsc. Microanal. 14, 296 (2008).

    Article  CAS  Google Scholar 

  166. M.K. Miller and R.C. Reed: Local electrode atom probe characterization of crept CMSX-4 superalloy. TMS Lett. 3, 5 (2006).

    CAS  Google Scholar 

  167. S. Tin, A.C. Yeh, A.P. Ofori, R.C. Reed, S.S. Babu, and M.K. Miller: Atomic partitioning of ruthenium in Ni-based superalloys, in Superalloys 2004: Proceedings of the Tenth International Symposium on Superalloys. Sponsored by the TMS Seven Springs International Symposium Committee, in Cooperation with the TMS High Temperature Alloys Committee and ASM International, September 19–23, 2004, Seven Springs Mountain Resort in Champion, PA (TMS, Warrendale, PA, 2004).

    Google Scholar 

  168. F. Vurpillot, J. Houard, A. Vella, and B. Deconihout: Thermal response of a field emitter subjected to ultra-fast laser illumination. J. Phys. D: Appl. Phys. 42, 125502 (2009).

    Article  CAS  Google Scholar 

  169. J.H. Bunton, J.D. Olson, D.R. Lenz, and T.E. Kelly: Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance. Microsc. Microanal. 13, 418 (2007).

    Article  CAS  Google Scholar 

  170. K. Inoue, F. Yano, A. Nishida, H. Takamizawa, T. Tsunomura, Y. Nagai, and M. Hasegawa: Dopant distributions in n-MOSFET structure observed by atom probe tomography. Ultramicroscopy 109, 1479 (2009).

    Article  CAS  Google Scholar 

  171. K. Stiller and M. Hattestrand: Nanoscale precipitation in a maraging steel studied by APFIM. Microsc. Microanal. 10, 342 (2004).

    Article  CAS  Google Scholar 

  172. Y.M. Chen, T. Ohkubo, M. Kodzuka, K. Morita, and K. Hono: Laser-assisted atom probe analysis of zirconia/spinel nanocomposite ceramics. Scr. Mater. 61, 693 (2009).

    Article  CAS  Google Scholar 

  173. M.K. Miller, K.F. Russell, K. Thompson, R. Alvis, and D.J. Larson: Review of atom probe FIB-based specimen preparation methods. Microsc. Microanal. 13, 428 (2007).

    Article  CAS  Google Scholar 

  174. P. Panayi: Reflectron, U.S. Patent No. 20100006752 (2010).

  175. F. Vurpillot, M. Gruber, S. Duguay, E. Cadel, and B. Deconihout: Modeling artifacts in the analysis of test semiconductor structures in atom probe tomography, in Frontiers of Characterization and Metrology for Nanoelectronics: 2009, May 11–15, 2009, American Institute of Physics.

    Google Scholar 

  176. B.P. Geiser, T.F. Kelly, D.J. Larson, J. Schneir, and J.P. Roberts: Spatial distribution maps for atom probe tomography. Microsc. Microanal. 13, 437 (2007).

    Article  CAS  Google Scholar 

  177. M.K. Miller, E.A. Kenik, and T.A. Zagula: Ordering in Ni4Mo: An APFIM/TEM/HVEM study, in 34th International Field Emission Symposium, July 13–17, 1987, France; J. Phys. Colloques 48, C6–385 (1987).

    Google Scholar 

  178. A.J. Detor, M.K. Miller, and C.A. Schuh: Measuring grain-boundary segregation in nanocrystalline alloys: Direct validation of statistical techniques using atom probe tomography. Philos. Mag. Lett. 87, 581 (2007).

    Article  CAS  Google Scholar 

  179. M.K. Miller, A. Cerezo, M.G. Hetherington, and G.D.W. Smith: Atom Probe Field Ion Microscopy (Clarendon Press, 1996).

    Google Scholar 

  180. M.P. Moody, B. Gault, L.T. Stephenson, D. Haley, and S.P. Ringer: Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. Ultramicroscopy 109, 815 (2009).

    Article  CAS  Google Scholar 

  181. M.K. Miller and T.F. Kelly: The atom TOMography (ATOM) concept. Microsc. Microanal. 16, 1856 (2010).

    Article  CAS  Google Scholar 

  182. J. Freitag, S. Kipfstuhl, and S.H. Faria: The connectivity of crystallite agglomerates in low-density firn at Kohnen station, Dronning Maud Land, Antarctica. Ann. Glaciol. 49, 114 (2008).

    Article  Google Scholar 

  183. D. Cullen and I. Baker: Observation of impurities in ice. Microsc. Res. Tech. 55, 198 (2001).

    Article  CAS  Google Scholar 

  184. D. Cullen and I. Baker: Observation of sulfate crystallites in Vostok accretion ice. Mater. Charact. 48, 263 (2002).

    Article  CAS  Google Scholar 

  185. I. Baker and D. Cullen: The structure and chemistry of 94 m Greenland Ice Sheet Project 2 ice. Ann. Glaciol. 35, 224 (2002).

    Article  CAS  Google Scholar 

  186. I. Baker, D. Cullen, and D. Iliescu: The microstructural location of impurities in ice. Can. J. Phys. 81, 1 (2003).

    Article  CAS  Google Scholar 

  187. F. Domine, T. Lauzier, A. Cabanes, L. Legagneux, W.F. Kuhs, K. Techmer, and T. Heinrichs: Snow metamorphism as revealed by scanning electron microscopy. Microsc. Res. Tech. 62, 33 (2003).

    Article  CAS  Google Scholar 

  188. D. Iliescu, I. Baker, and H. Chang: Determining the orientations of ice crystals using electron backscatter patterns. Microsc. Res. Tech. 63, 183 (2004).

    Article  Google Scholar 

  189. R. Obbard, D. Iliescu, D. Cullen, J. Chang, and I. Baker: SEM/EDS comparison of polar and seasonal temperate ice. Microsc. Res. Tech. 62, 49 (2003).

    Article  CAS  Google Scholar 

  190. I. Baker, D. Iliescu, R. Obbard, H. Chang, B. Bostick, and C.P. Daghlian: Microstructural characterization of ice cores. Ann. Glaciol. 42, 441 (2005).

    Article  CAS  Google Scholar 

  191. R. Obbard, I. Baker, and K. Sieg: Using electron backscatter diffraction patterns to examine recrystallization in polar ice sheets. J. Glaciol. 52, 546 (2006).

    Article  CAS  Google Scholar 

  192. Y. Chino and D.C. Dunand: Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater. 56, 105 (2008).

    Article  CAS  Google Scholar 

  193. S. Deville: Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 10, 155 (2008).

    Article  CAS  Google Scholar 

  194. E.D. Spoerke, N.G.D. Murray, H. Li, L.C. Brinson, D.C. Dunand, and S.I. Stupp: Titanium with aligned, elongated pores for orthopedic tissue engineering applications. J. Biomed. Mater. Res. A 84A, 402 (2008).

    Article  CAS  Google Scholar 

  195. J.L. Fife, J.C. Li, D.C. Dunand, and P.W. Voorhees: Morphological analysis of pores in directionally freeze-cast titanium foams. J. Mater. Res. 24, 117 (2009).

    Article  CAS  Google Scholar 

  196. J. Freitag, F. Wilhelms, and S. Kipfstuhl: Microstructure-dependent densification of polar firn derived from x-ray microtomography. J. Glaciol. 50, 243 (2004).

    Article  Google Scholar 

  197. C.C. Lundy, M.Q. Edens, and R.L. Brown: Measurement of snow density and microstructure using computed tomography. J. Glaciol. 48, 312 (2002).

    Article  Google Scholar 

  198. R.W. Lomonaco, S. Chen, and I. Baker: Characterization of porous snow with SEM and micro CT. Microsc. Microanal. 15, 1110 (2009).

    Article  Google Scholar 

  199. J. Schwander, T. Sowers, J.M. Barnola, T. Blunier, A. Fuchs, and B. Malaize: Age scale of the air in the summit ice: Implication for glacial-interglacial temperature change. J. Geophys. Res. 102, 19483 (1997).

    Article  Google Scholar 

  200. T. Sowers, M. Bender, D. Raynaud, and Y.S. Korotkevich: Delta-N-15 of N2 in air trapped in polar ice—A tracer of gas-transport in the firn and a possible constraint on ice age-gas age-differences. J. Geophys. Res. 97, 15683 (1992).

    Article  CAS  Google Scholar 

  201. M. Bender, T. Sowers, and E. Brook: Gases in ice cores. Proc. Natl. Acad. Sci. U.S.A. 94, 8343 (1997).

    Article  CAS  Google Scholar 

  202. M. Bender, T. Sowers, and V. Lipenkov: On the concentrations of O-2, N-2, and Ar in trapped gases from ice cores. J. Geophys. Res. 100, 18651 (1995).

    Article  Google Scholar 

  203. Y.K. Chen, Y.S. Chu, Y. JaeMock, I. McNulty, S. Qun, P.W. Voorhees, and D.C. Dunand: Morphological and topological analysis of coarsened nanoporous gold by x-ray nanotomography. Appl. Phys. Lett. 96, 043122 (2010).

    Article  CAS  Google Scholar 

  204. B.C. Larson, A. El-Azab, W.G. Yang, J.Z. Tischler, W.J. Liu, and G.E. Ice: Experimental characterization of the mesoscale dislocation density tensor. Philos. Mag. 87, 1327 (2007).

    Article  CAS  Google Scholar 

  205. R.M. Suter, D. Hennessy, C. Xiao, and U. Lienert: Forward modeling method for microstructure reconstruction using x-ray diffraction microscopy: Single-crystal verification. Rev. Sci. Instrum. 77, 123905 (2006).

    Article  CAS  Google Scholar 

  206. J.S. Park, P. Revesz, A. Kazimirov, and M.P. Miller: A methodology for measuring in situ lattice strain of bulk polycrystalline material under cyclic load. Rev. Sci. Instrum. 78, 023910 (2007).

    Article  CAS  Google Scholar 

  207. B.C. Larson, W. Yang, J.Z. Tischler, G.E. Ice, J.D. Budai, W. Liu, and H. Weiland: Micron-resolution 3-D measurement of local orientations near a grain-boundary in plane-strained aluminum using x-ray microbeams. Int. J. Plast. 20, 543 (2004).

    Article  CAS  Google Scholar 

  208. J.D. Budai, W. Liu, J.Z. Tischler, Z.W. Pan, D.P. Norton, B.C. Larson, W. Yang, and G.E. Ice: Polychromatic x-ray micro- and nanodiffraction for spatially-resolved structural studies. Thin Solid Films 516, 8013 (2008).

    Article  CAS  Google Scholar 

  209. W. Yang, B.C. Larson, G.M. Pharr, G.E. Ice, J.D. Budai, J.Z. Tischler, and W.J. Liu: Deformation microstructure under microindents in single-crystal Cu using three-dimensional x-ray structural microscopy. J. Mater. Res. 19, 66 (2004).

    Article  CAS  Google Scholar 

  210. H.J. Bunge, L. Wcislak, H. Klein, U. Garbe, and J.R. Schneider: Texture and microstructure analysis with high-energy synchrotron radiation. Adv. Eng. Mater. 4, 300 (2002).

    Article  Google Scholar 

  211. S. Schmidt, S.F. Nielsen, C. Gundlach, L. Margulies, X. Huang, and D.J. Jensen: Watching the growth of bulk grains during recrystallization of deformed metals. Science 305, 229 (2004).

    Article  CAS  Google Scholar 

  212. R.B. Godiksen, Z.T. Trautt, M. Upmanyu, J. Schiotz, D.J. Jensen, and S. Schmidt: Simulations of boundary migration during recrystallization using molecular dynamics. Acta Mater. 55, 6383 (2007).

    Article  CAS  Google Scholar 

  213. M.A. Martorano, M.A. Fortes, and A.F. Padilha: The growth of protrusions at the boundary of a recrystallized grain. Acta Mater. 54, 2769 (2006).

    Article  CAS  Google Scholar 

  214. S. Sreekala and M. Haataja: Recrystallization kinetics: A coupled coarse-grained dislocation density and phase-field approach. Phys. Rev. B 76, 094109 (2007).

    Article  CAS  Google Scholar 

  215. Y.B. Zhang, A. Godfrey, Q. Liu, W. Liu, and D.J. Jensen: Analysis of the growth of individual grains during recrystallization in pure nickel. Acta Mater. 57, 2631 (2009).

    Article  CAS  Google Scholar 

  216. E. Anselmino: Microstructural Effects on Grain Boundary Motion in Al-Mn Alloys. Ph.D. Thesis, Delft University Technology (2007).

    Google Scholar 

  217. J. Kacher, I.M. Robertson, M. Nowell, J. Knapp, and K. Hattar: Study of rapid grain boundary migration in a nanocrystalline Ni thin film. Mater. Sci. Eng. A 528, 1628 (2011).

    Article  CAS  Google Scholar 

  218. G. Bruno, H.C. Pinto, and W. Reimers: γ’ nucleation and growth in the nickel-base superalloy SC16, in Neutrons in Science and Industry. International Conference on Neutron Scattering 2001, September 9–13, 2001, Germany (Springer-Verlag, Berlin New York Heidelberg, 2002).

    Google Scholar 

  219. D. Ma, A.D. Stoica, X.L. Wang, Z.P. Lu, M. Xu, and M. Kramer: Efficient local atomic packing in metallic glasses and its correlation with glass-forming ability. Phys. Rev. B 80, 014202 (2009).

    Article  CAS  Google Scholar 

  220. M. Ratti, D. Leuvrey, M.H. Mathon, and Y. de Carlan: Influence of titanium on nano-cluster (Y, Ti, O) stability in ODS ferritic materials. J. Nucl. Mater. 386, 540 (2009).

    Article  CAS  Google Scholar 

  221. I.C. Noyan and J.B. Cohen: Residual Stress: Measurement by Diffraction and Interpretation, in Springer Series on Materials Research and Engineering, (Springer-Verlag, Berlin New York Heidelberg, 1987).

    Book  Google Scholar 

  222. P.J. Withers and H.K.D.H. Bhadeshia: Overview: Residual stress part 1—Measurement techniques. Mater. Sci. Technol. 17, 355 (2001).

    Article  CAS  Google Scholar 

  223. X.L. Wang: The application of neutron diffraction to engineering problems. JOM 58, 52 (2006).

    Article  CAS  Google Scholar 

  224. P.J. Bouchard, P.J. Withers, S.A. McDonald, and R.K. Heenan: Quantification of creep cavitation damage around a crack in a stainless steel pressure vessel. Acta Mater. 52, 23 (2004).

    Article  CAS  Google Scholar 

  225. C. Ohms, R. Wimpory, and D. Neov: Residual stress measurement by neutron diffraction in a single bead on plate weld: Influence of instrument and measurement settings on the scatter of the results, in 6th International Conference on Processing and Manufacturing of Advanced Materials—THERMEC’2009, August 25–29, 2009, Berlin, Germany Trans Tech Publications, 2010).

    Google Scholar 

  226. X.-L. Wang, E.A. Payzanta, B. Taljata, C.R. Hubbarda, J.R. Keisera, and M.J. Jirinecb: Experimental determination of the residual stresses in a spiral weld overlay tube. Mater. Sci. Eng. A 232, 31 (1997).

    Article  Google Scholar 

  227. P.J. Webster, X. Wang, G. Mills, and G.A. Webster: Residual stress changes in railway rails. Physica B 180 /, 1029 (1992).

    Article  Google Scholar 

  228. ISIS: Case Study: Wing Quality Soars at ISIS. Science and Technology Facilities Council.

  229. Z. Feng, X.-L. Wang, S. Spooner, G.M. Goodwin, P.J. Masiasz, C.R. Hubbard, and T. Zacharia: A finite element model for residual stress in repair welds, in Proceedings of 1996 ASME Pressure Vessels and Piping Conference, PVP-Vol. 327, 1996, pp 119–126.

    Google Scholar 

  230. J.A. Wollmershauser, S. Kabra, and S.R. Agnew: In situ neutron diffraction study of the plastic deformation mechanisms of B2 ordered intermetallic alloys: NiAl, CuZn, and CeAg. Acta Mater. 57, 213 (2009).

    Article  CAS  Google Scholar 

  231. S. Cheng, A.D. Stoica, X.L. Wang, Y. Ren, J. Almer, J.A. Horton, C.T. Liu, B. Clausen, D.W. Brown, P.K. Liaw, and L. Zuo: Deformation crossover: From nano- to mesoscale. Phys. Rev. Lett. 103, 035502 (2009).

    Article  CAS  Google Scholar 

  232. G.J. Fan, L. Li, Y. Bin, H. Choo, P.K. Liaw, T.A. Saleh, B. Clausen, and D.W. Brown: In situ neutron-diffraction study of tensile deformation of a bulk nanocrystalline alloy. Mater. Sci. Eng. A 506, 187 (2009).

    Article  CAS  Google Scholar 

  233. Y.-D. Wang, H. Tian, A.D. Stoica, X.-L. Wang, P.K. Liaw, and J.W. Richardson: The development of grain-orientation-dependent residual stressess in a cyclically deformed alloy. Nat. Mater. 2, 101 (2003).

    Article  CAS  Google Scholar 

  234. M.L. Benson, P.K. Liaw, T.A. Saleh, H. Choo, D.W. Brown, M.R. Daymond, E.W. Huang, X.L. Wang, A.D. Stoica, R.A. Buchanan, and D.L. Klarstrom: Deformation-induced phase development in a cobalt-based superalloy during monotonic and cyclic deformation. Physica B 385 /, 523 (2006).

    Article  CAS  Google Scholar 

  235. M.L. Benson, A.D. Stoica, P.K. Liaw, H. Choo, T.A. Saleh, X.L. Wang, D.W. Brown, and D.L. Klarstrom: Intergranular strain and phase transformation in a cobalt-based superalloy. Mater. Sci. Forum 524 /, 893 (2006).

    Article  Google Scholar 

  236. W. Ludwig, S. Schmidt, E.M. Lauridsen, and H.F. Poulsen: X-ray diffraction contrast tomography: A novel technique for three-dimensional grain mapping of polycrystals. I. Direct beam case. J. Appl. Cryst. 41, 302 (2008).

    Article  CAS  Google Scholar 

  237. G. Johnson, A. King, M.G. Honnicke, J. Marrow, and W. Ludwig: x-ray diffraction contrast tomography: A novel technique for three-dimensional grain mapping of polycrystals. II. The combined case. J. Appl. Cryst. 41, 310 (2008).

    Article  CAS  Google Scholar 

  238. S.F. Nielsen, H.F. Poulsen, F. Beckmann, C. Thorning, and J.A. Wert: Measurements of plastic displacement gradient components in three dimensions using marker particles and synchrotron X-ray absorption microtomography. Acta Mater. 51, 2407 (2003).

    Article  CAS  Google Scholar 

  239. X.L. Wang, T.M. Holden, G.Q. Rennich, A.D. Stoica, P.K. Liaw, H. Choo, and C.R. Hubbard: VULCAN—The engineering diffractometer at the SNS. Physica B 385 /, 673 (2006).

    Article  CAS  Google Scholar 

  240. X.-L. Wang, T.M. Holden, A.D. Stoica, K. An, H.D. Skorpenske, A.B. Jones, G.Q. Rennich, and E.B. Iverson: First results from the VULCAN diffractometer at the SNS. Mater. Sci. Forum 652, 105 (2010).

    Article  Google Scholar 

  241. T.E. Mason, D. Abernathy, I. Anderson, J. Ankner, T. Egami, G. Ehlers, A. Ekkebus, G. Granroth, M. Hagen, K. Herwig, J. Hodges, C. Hoffmann, C. Horak, L. Horton, F. Klose, J. Larese, A. Mesecar, D. Myles, J. Neuefein, M. Ohl, C. Tulk, X.-L. Wang, and J. Zhao: The Spallation neutron source in Oak Ridge: A powerful tool for materials research. Physica B 385 /, 955 (2006).

    Article  CAS  Google Scholar 

  242. W. Woo, Z. Feng, C.R. Hubbard, S.A. David, X.L. Wang, B. Clausen, and T. Ungar: In-situ time-resolved neutron diffraction measurements of microstructure variations during friction stir welding in a 6061-T6 aluminum alloy, in 8th International Conference on Trends in Welding Research, June 1–6, 2008, Pine Mountain, GA ASM International, 2009).

    Google Scholar 

  243. M. De Graef, M.V. Kral, and M. Hillert: A modern 3-D view of an “Old” pearlite colony. JOM 58, 25 (2006).

    Article  Google Scholar 

  244. A. Mangan, P.D. Lauren, and G.J. Shiflet: Three-dimensional reconstruction of Widmanstatten plates in Fe-12.3Mn-0.8C. J. Microsc. 188, 36 (1997).

    Article  CAS  Google Scholar 

  245. A. Tewari, A.M. Gokhale, and R.M. German: Effect of gravity on three-dimensional coordination number distribution in liquid phase sintered microstructures. Acta Mater. 47, 3721 (1999).

    Article  CAS  Google Scholar 

  246. D.M. Saylor, B.S. El-Dasher, T. Sano, and G.S. Rohrer: Distribution of grain boundaries in SrTiO3 as a function of five macroscopic parameters. J. Am. Ceram. Soc. 87, 670 (2004).

    Article  CAS  Google Scholar 

  247. D.M. Saylor, A. Morawiec, and G.S. Rohrer: Distribution of grain boundaries in magnesia as a function of five macroscopic parameters. Acta Mater. 51, 3663 (2003).

    Article  CAS  Google Scholar 

  248. D.J. Rowenhorst, A. Gupta, C.R. Feng, and G. Spanos: 3D crystallographic and morphological analysis of coarse martensite: Combining EBSD and serial sectioning. Scr. Mater. 55, 11 (2006).

    Article  CAS  Google Scholar 

  249. D.J. Rowenhorst and P.W. Voorhees: Measurements of the grain boundary energy and anisotropy in tin. Metall. Mater. Trans. A 36A, 2127 (2005).

    Article  CAS  Google Scholar 

  250. T.L. Wolfsdorf, W.H. Bender, and P.W. Voorhees: The morphology of high volume fraction solid-liquid mixtures: An application of microstructural tomography. Acta Mater. 45, 2279 (1997).

    Article  CAS  Google Scholar 

  251. M. Li, S. Ghosh, T.N. Rouns, H. Weiland, O. Richmond, and W. Hunt: Serial sectioning method in the construction of 3-D microstructures for particle-reinforced MMCs. Mater. Charact. 41, 81 (1998).

    Article  CAS  Google Scholar 

  252. M.V. Kral, M.A. Mangan, G. Spanos, and R.O. Rosenberg: Three-dimensional analysis of microstructures. Mater. Charact. 45, 17 (2000).

    Article  CAS  Google Scholar 

  253. M.A. Wall, A.J. Schwartz, and L. Nguyen: A high-resolution serial sectioning specimen preparation technique for application to electron backscatter diffraction. Ultramicroscopy 88, 73 (2001).

    Article  CAS  Google Scholar 

  254. J.E. Spowart, H.M. Mullens, and B.T. Puchala: Collecting and analyzing microstructures in three dimensions: A fully automated approach. JOM 55, 35 (2003).

    Article  CAS  Google Scholar 

  255. J. Konrad, S. Zaefferer, and D. Raabe: Investigation of orientation gradients around a hard Laves particle in a warm-rolled Fe3Al-based alloy using a 3D EBSD-FIB technique. Acta Mater. 54, 1369 (2006).

    Article  CAS  Google Scholar 

  256. J. Michael and L. Giannuzzi: Improved EBSD sample preparation via low energy Ga+ FIB ion milling. Microsc. Microanal. 13, 926 (2007).

    Google Scholar 

  257. J.R. Wilson, W. Kobsiriphat, R. Mendoza, H.Y. Chen, J.M. Hiller, D.J. Miller, K. Thornton, P.W. Voorhees, S.B. Adler, and S.A. Barnett: Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat. Mater. 5, 541 (2006).

    Article  CAS  Google Scholar 

  258. D. Gostovic, J.R. Smith, D.P. Kundinger, K.S. Jones, and E.D. Wachsman: Three-dimensional reconstruction of porous LSCF cathodes. Electrochem. Solid State Lett. 10, B214 (2007).

    Article  CAS  Google Scholar 

  259. B.L. Adams, S.I. Wright, and K. Kunze: Orientation imaging: The emergence of a new microscopy. Metall. Mater. Trans. A 24A, 819 (1993).

    Article  CAS  Google Scholar 

  260. O. Engler and V. Randle: Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping. (Taylor and Francis, 2010).

    Google Scholar 

  261. S. Zaefferer, S.I. Wright, and D. Raabe: Three-dimensional orientation microscopy in a focused ion beam-scanning electron microscope: A new dimension of microstructure characterization. Metall. Mater. Trans. A 39A, 374 (2008).

    Article  CAS  Google Scholar 

  262. M. Groeber, S. Ghosh, M.D. Uchic, and D.M. Dimiduk: A framework for automated analysis and simulation of 3D polycrystalline micro structures. Part 1: Statistical characterization. Acta Mater. 56, 1257 (2008).

    Article  CAS  Google Scholar 

  263. S. Zaefferer, S.I. Wright, and D. Raabe: Three-dimensional orientation microscopy in a focused ion beam–scanning electron microscope: A new dimension of microstructure characterization. Metall. Mater. Trans. A 39A, 374 (2008).

    Article  CAS  Google Scholar 

  264. P.G. Kotula, M.R. Keenan, and J.R. Michael: Automated analysis of SEM x-ray spectral images: A powerful new microanalysis tool. Microsc. Microanal. 9, 1 (2003).

    Article  CAS  Google Scholar 

  265. F.J. Humphreys: A new analysis of recovery, recrystallisation, and grain growth. Mater. Sci. and Tech. 15, 37 (1999).

    Article  CAS  Google Scholar 

  266. O.V. Rofman, P.S. Bate, I. Brough, and F.J. Humphreys: Study of dynamic grain growth by electron microscopy and EBSD. J. Microsc. Oxford 233, 432 (2009).

    Article  CAS  Google Scholar 

  267. S. Tsurekawa, T. Fukino, and T. Matsuzaki: In-situ SEM/EBSD observation of abnormal grain growth in electrodeposited nanocrystalline nickel. Int. J. Mater. Res. 100, 800 (2009).

    Article  CAS  Google Scholar 

  268. M.L. Taheri, J.T. Sebastian, B.W. Reed, D.N. Seidman, and A.D. Rollett: Site-specific atomic scale analysis of solute segregation to a coincidence site lattice grain boundary. Ultramicroscopy 110, 278 (2009).

    Article  CAS  Google Scholar 

  269. G.G.E. Seward, S. Celotto, D.J. Prior, J. Wheeler, and R.C. Pond: In situ SEM-EBSD observations of the hcp to bcc phase transformation in commercially pure titanium. Acta Mater. 52, 821 (2004).

    Article  CAS  Google Scholar 

  270. Y. Huang, F.J. Humphreys, and I. Brough: The application of a hot deformation SEM stage, backscattered electron imaging and EBSD to the study of thermomechanical processing. J. Microsc. Oxford 208, 18 (2002).

    Article  CAS  Google Scholar 

  271. D. Raabe, M. Sachtleber, H. Weiland, G. Scheele, and Z.S. Zhao: Grain-scale micromechanics of polycrystal surfaces during plastic straining. Acta Mater. 51, 1539 (2003).

    Article  CAS  Google Scholar 

  272. C. Niederberger, W.M. Mook, X. Maeder and J. Michler: In situ electron backscatter diffraction (EBSD) during the compression of micropillars. Mater. Sci. Eng. A Struct. 527, 4306 (2010).

    Article  CAS  Google Scholar 

  273. S.J. Dillon and G.S. Rohrer: Characterization of the grain-boundary character and energy distributions of yttria using automated serial sectioning and EBSD in the FIB. J. Am. Ceram. Soc. 92, 1580 (2009).

    Article  CAS  Google Scholar 

  274. J. Li, S.J. Dillon, and G.S. Rohrer: Relative grain boundary area and energy distributions in nickel. Acta Mater. 57, 4304 (2009).

    Article  CAS  Google Scholar 

  275. S.J. Dillon and G.S. Rohrer: Mechanism for the development of anisotropic grain boundary character distributions during normal grain growth. Acta Mater. 57, 1 (2009).

    Article  CAS  Google Scholar 

  276. B.L. Adams and J. Kacher: EBSD-based microscopy: Resolution of dislocation density. Comput. Mater. Con. 14, 185 (2009).

    Google Scholar 

  277. J. Kacher, C. Landon, B.L. Adams, and D. Fullwood: Bragg’s Law diffraction simulations for electron backscatter diffraction analysis. Ultramicroscopy 109, 1148 (2009).

    Article  CAS  Google Scholar 

  278. P.S. Karamched and A.J. Wilkinson: High resolution electron back-scatter diffraction analysis of thermally and mechanically induced strains near carbide inclusions in a superalloy. Acta Mater. 59, 263 (2011).

    Article  CAS  Google Scholar 

  279. D.J. Dingley, A.J. Wilkinson, G. Meaden, and P.S. Karamched: Elastic strain tensor measurement using electron backscatter diffraction in the SEM. J. Electron Microsc. (Tokyo) 59, S155 (2010).

    Article  CAS  Google Scholar 

  280. D.T. Hoelzer, M.J. Allinger, M.K. Miller, G.R. Odette, and J. Bentley: Development of advanced nanostructured ferritic alloys for nuclear fission and fusion applications. JOM 56, 92 (2004).

    Article  Google Scholar 

  281. U. Martin and M. Heilmaier: Novel dispersion strengthened metals by mechanical alloying. Adv. Eng. Mater. 6, 515 (2004).

    Article  CAS  Google Scholar 

  282. M.K. Miller, D.T. Hoelzer, E.A. Kenik, and K.F. Russell: Stability of ferritic MA/ODS alloys at high temperatures. Intermetallics 13, 387 (2005).

    Article  CAS  Google Scholar 

  283. J.H. Schneibel, C.T. Liu, M.K. Miller, M.J. Mills, P. Sarosi, M. Heilmaier, and D. Sturm: Ultrafine-grained nanocluster-strengthened alloys with unusually high creep strength. Scr. Mater. 61, 793 (2009).

    Article  CAS  Google Scholar 

  284. C.L. Fu, M. Krcmar, G.S. Painter, and X.Q. Chen: Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe. Phys. Rev. Lett. 99, 225502 (2007).

    Article  CAS  Google Scholar 

  285. J. Xu, C.T. Liu, M.K. Miller, and H.M. Chen: Nanocluster-associated vacancies in nanocluster-strengthened ferritic steel as seen via positron-lifetime spectroscopy. Phys. Rev. B 79, 020204(R) (2009).

    Article  CAS  Google Scholar 

  286. I. Arslan, E.A. Marquis, M. Homer, M.A. Hekmaty, and N.C. Bartelt: Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. Ultramicroscopy 108, 1579 (2008).

    Article  CAS  Google Scholar 

  287. L. Yang, M.K. Miller, X.L. Wang, C.T. Liu, A.D. Stoica, D. Ma, J. Almer, and D. Shi: Nanoscale solute partitioning in bulk metallic glasses. Adv. Mater. (Deerfield Beach Fla.) 21, 305 (2009).

    Article  CAS  Google Scholar 

  288. A. Kulkarni, S. Mehraeen, B.W. Reed, N.L. Okamoto, N.D. Browning, and B.C. Gates: Nearly uniform decaosmium clusters supported on MgO: Characterization by x-ray absorption spectroscopy and scanning transmission electron microscopy. J. Phys. Chem. C 113, 13377 (2009).

    Article  CAS  Google Scholar 

  289. J.F. Nye: Some geometrical relations in dislocated crystals. Acta Metall. 1, 153 (1953).

    Article  CAS  Google Scholar 

  290. B.S. El-Dasher, B.L. Adams, and A.D. Rollett: Viewpoint: Experimental recovery of geometrically necessary dislocation density in polycrystals. Scr. Mater. 48, 141 (2003).

    Article  CAS  Google Scholar 

  291. D.P. Field, K.R. Magid, I.N. Mastorakos, J.N. Florando, D.H. Lassila, and J.W. Morris: Mesoscale strain measurement in deformed crystals: A comparison of x-ray microdiffraction with electron backscatter diffraction. Philos. Mag. 90, 1451 (2010).

    Article  CAS  Google Scholar 

  292. B. Jakobsen, H.F. Poulsen, U. Lienert, J. Almer, S.D. Shastri, H.O. Sorensen, C. Gundlach, and W. Pantleon: Formation and subdivision of deformation structures during plastic deformation. Science 312, 889 (2006).

    Article  CAS  Google Scholar 

  293. B. Jakobsen, H.F. Poulsen, U. Lienert, and W. Pantleon: Direct determination of elastic strains and dislocation densities in individual subgrains in deformation structures. Acta Mater. 55, 3421 (2007).

    Article  CAS  Google Scholar 

  294. H.A. Padilla, C.D. Smith, J. Lambros, A.J. Beaudoin, and I.M. Robertson: Effects of deformation twinning on energy dissipation in high rate deformed zirconium. Metall. Mater. Trans. A 38, 2916 (2007).

    Article  CAS  Google Scholar 

  295. B.G. Clark, I.M. Robertson, L.M. Dougherty, D.C. Ahn, and P. Sofronis: High-temperature dislocation-precipitate interactions in Al alloys: An in situ transmission electron microscopy deformation study. J. Mater. Res. 20, 1792 (2005).

    Article  CAS  Google Scholar 

  296. L.M. Dougherty, I.M. Robertson, and J.S. Vetrano: Fundamental process responsible for continuous dynamic recrystallization: An in-situ TEM study, in Hot Deformation of Aluminum Alloys III, 2–6 March 2003, San Diego, CA Minerals Metals, Materials Society, 2003).

    Google Scholar 

  297. Y. Xiang and D.J. Srolovitz: Dislocation climb effects on particle bypass mechanisms. Philos. Mag. 86, 3937 (2006).

    Article  CAS  Google Scholar 

  298. Y. Xiang, D.J. Srolovitz, L.T. Cheng, and E. Weinan: Level set simulations of dislocation-particle bypass mechanisms. Acta Mater. 52, 1745 (2004).

    Article  CAS  Google Scholar 

  299. J.S. Robach, I.M. Robertson, B.D. Wirth, and A. Arsenlis: In-situ transmission electron microscopy observations and molecular dynamics simulations of dislocation-defect interactions in ion-irradiated copper. Philos. Mag. 83, 955 (2003).

    Article  CAS  Google Scholar 

  300. I.M. Robertson, J.S. Robach, H.J. Lee, and B.D. Wirth: Dynamic observations and atomistic simulations of dislocation-defect interactions in rapidly quenched copper and gold. Acta Mater. 54, 1679 (2006).

    Article  CAS  Google Scholar 

  301. H.-J. Lee, J.-H. Shim, and B.D. Wirth: Atomistic study of screw dislocation—Obstacle interactions in BCC Mo. JOM 56, 68 (2004).

    Article  Google Scholar 

  302. B.D. Wirth, V.V. Bulatov, and T. De La Diaz Rubia: Dislocation-stacking fault tetrahedron interactions in Cu. J. Eng. Mater. Trans. ASME 124, 329 (2002).

    Article  CAS  Google Scholar 

  303. A.J. Detor, M.K. Miller, and C.A. Schuh: Solute distribution in nanocrystalline Ni-W alloys examined through atom probe tomography. Philos. Mag. 86, 4459 (2006).

    Article  CAS  Google Scholar 

  304. A.J. Detor, M.K. Miller, and C.A. Schuh: Measuring grain-boundary segregation in nanocrystalline alloys: Direct validation of statistical techniques using atom probe tomography. Philos. Mag. 87, 581 (2007).

    Article  CAS  Google Scholar 

  305. A.J. Detor and C.A. Schuh: Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni-W system. Acta Mater. 55, 4221 (2007).

    Article  CAS  Google Scholar 

  306. R.C. Birtcher, M.A. Kirk, K. Furuya, G.R. Lumpkin, and M.O. Ruault: In situ transmission electron microscopy investigation of radiation effects. J. Mater. Res. 20, 1654 (2005).

    Article  CAS  Google Scholar 

  307. M. Hernandez-Mayoral, Z. Yao, M.L. Jenkins, and M.A. Kirk: Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 2: Damage evolution in thin-foils at higher doses. Philos. Mag. 88, 2881 (2008).

    Article  CAS  Google Scholar 

  308. M.L. Jenkins, Z. Yao, M. Hernandez-Mayoral, and M.A. Kirk: Dynamic observations of heavy-ion damage in Fe and Fe-Cr alloys. J. Nucl. Mater. 389, 197 (2009).

    Article  CAS  Google Scholar 

  309. M.J. Demkowicz, R.G. Hoagland, and J.P. Hirth: Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys. Rev. Lett. 100, 136102 (2008).

    Article  CAS  Google Scholar 

  310. K. Hattar, M.J. Demkowicz, A. Misra, I.M. Robertson, and R.G. Hoagland: Arrest of He bubble growth in Cu-Nb multilayer nanocomposites. Scr. Mater. 58, 541 (2008).

    Article  CAS  Google Scholar 

  311. T. Höchbauer, A. Misra, K. Hattar, and R.G. Hoagland: Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites. J. Appl. Phys. 98, 123516 (2005).

    Article  CAS  Google Scholar 

  312. A. Misra, M.J. Demkowicz, X. Zhang, and R.G. Hoagland: The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59, 62 (2007).

    Article  CAS  Google Scholar 

  313. S. Lozano-Perez, T. Yamada, T. Terachi, M. Schroder, C.A. English, G.D.W. Smith, C.R.M. Grovenor, and B.L. Eyre: Multi-scale characterization of stress-corrosion cracking of cold-worked stainless steels and the influence of Cr content. Acta Mater. 57, 5361 (2009).

    Article  CAS  Google Scholar 

  314. S. Lozano-Perez: 3-D characterization of SCC in cold worked stainless steels from PWRs, in 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Virginia Beach, VA, (2009).

    Google Scholar 

  315. P.L. Andresen, P.H. Chou, M.M. Morra, J. Lawrence Nelson, and R.B. Rebak: Microstructural and stress-corrosion cracking characteristics of austenitic stainless steels containing silicon. Metall. Mater. Trans. A 40, 2824 (2009).

    Article  CAS  Google Scholar 

  316. C. Garcia, F. Martin, P. De Tiedra, J.A. Heredero, and M.L. Aparicio: Effects of prior cold work and sensitization heat treatment on chloride stress-corrosion cracking in type 304 stainless steels. Corrosion Sci. 43, 1519 (2001).

    Article  CAS  Google Scholar 

  317. J. Nakano, Y. Miwa, T. Tsukada, S. Endo, and K. Hide: In situ SCC observation on neutron irradiated thermally sensitized austenitic stainless steel. J. Nucl. Mater. 367, 940 (2007).

    Article  CAS  Google Scholar 

  318. S. Lozano-Perez, D.W. Saxey, T. Yamada, and T. Terachi: Atom-probe tomography characterization of the oxidation of stainless steel. Scr. Mater. 62, 855 (2010).

    Article  CAS  Google Scholar 

  319. S. Lozano-Perez, P. Rodrigo, and L. Gontard: Three-dimensional characterization of stress corrosion cracks. J. Nucl. Mater. 408, 289 (2011).

    Article  CAS  Google Scholar 

  320. S. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, and A. Yamada: Experimental visualization of lithium diffusion in LixFePO4. Nat. Mater. 7, 707 (2008).

    Article  CAS  Google Scholar 

  321. E.F. Rauch, M. Véron, J. Portillo, D. Bultreys, Y. Maniette, and S. Nicolopoulos: Automatic crystal orientation and phase mapping in TEM by precession diffraction. Microsc. Microanal. 22, s5 (2008).

    Google Scholar 

  322. R. Gemma, T. Al-Kassab, R. Kirchheim, and A. Pundt: Studies on hydrogen loaded V-Fe8 at.% films on Al2O3 substrate. J. Alloy. Comp. 446 /, 534 (2007).

    Article  CAS  Google Scholar 

  323. R. Gemma, T. Al-Kassab, R. Kirchheim, and A. Pundt: APT analyses of deuterium-loaded Fe/V multi-layered films. Ultramicroscopy 109, 631 (2009).

    Article  CAS  Google Scholar 

  324. J. Takahashia, K. Kawakamia, Y. Kobayashia, and T. Taruib: The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography. Scr. Mater. 63, 261 (2010).

    Article  CAS  Google Scholar 

  325. Y. Kihn, C. Mirguet, and L. Calmels: EELS studies of Ti-bearing materials and ab initio calculations. J. Electron Spectros. Relat. Phenom. 143, 119 (2005).

    Article  CAS  Google Scholar 

  326. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).

    Article  CAS  Google Scholar 

  327. N.Q. Vo, R.S. Averback, P. Bellon, and A. Caro: Limits of hardness at the nanoscale: Molecular dynamics simulations. Phys. Rev. B 78, 241402R (2008).

    Article  CAS  Google Scholar 

  328. M.M.J. Treacy, J.M. Gibson, L. Fan, D.J. Paterson, and I. McNulty: Fluctuation microscopy: A probe of medium range order. Rep. Prog. Phys. 68, 2899 (2005).

    Article  CAS  Google Scholar 

  329. H.J. Bunge and R.A. Schwarzer: Orientation stereology—A new branch in texture research. Adv. Eng. Mater. 3, 25 (2001).

    Article  CAS  Google Scholar 

  330. R.J. Larsen and B.L. Adams: New stereology for recovering grain boundary plane distributions in the crystal frame. Mater. Sci. Forum 408, 125 (2002).

    Article  Google Scholar 

  331. R.J. Larsen and B.L. Adams: New stereology for the recovery of grain-boundary plane distributions in the crystal frame. Metall. Mater. Trans. A 35A, 1991 (2004).

    Article  CAS  Google Scholar 

  332. C.A. Schuh and M. Frary: Correlations beyond the nearest-neighbor level in grain boundary networks. Scr. Mater. 54, 1023 (2006).

    Article  CAS  Google Scholar 

  333. M. Kumar, W.E. King, and A.J. Schwartz: Modifications to the microstructural topology in f.c.c. materials through thermomechanical processing. Acta Mater. 48, 2081 (2000).

    Article  CAS  Google Scholar 

  334. M. Frary and C.A. Schuh: Grain boundary networks: Scaling laws, preferred cluster structure, and their implications for grain boundary engineering. Acta Mater. 53, 4323 (2005).

    Article  CAS  Google Scholar 

  335. M. Frary and C.A. Schuh: Connectivity and percolation behaviour of grain boundary networks in three dimensions. Philos. Mag. 85, 1123 (2005).

    Article  CAS  Google Scholar 

  336. C.A. Schuh, M. Kumar, and W.E. King: Analysis of grain boundary networks and their evolution during grain boundary engineering. Acta Mater. 51, 687 (2003).

    Article  CAS  Google Scholar 

  337. C.A. Schuh, M. Kumar, and W.E. King: Universal features of grain boundary networks in FCC materials. J. Mater. Sci. 40, 847 (2005).

    Article  CAS  Google Scholar 

  338. C.A. Schuh and C. Ying: Diffusion on grain boundary networks: Percolation theory and effective medium approximations. Acta Mater. 54, 4709 (2006).

    Article  CAS  Google Scholar 

  339. Y. Chen and C.A. Schuh: Percolation of diffusional creep: A new universality class. Phys. Rev. Lett. 98, 035701 (2007).

    Article  CAS  Google Scholar 

  340. C.D.W. Van Siclen: Intergranular fracture in model polycrystals with correlated distribution of low-angle grain boundaries. Phys. Rev. B 73, 184118 (2006).

    Article  CAS  Google Scholar 

  341. X.M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, and B.P. Uberuaga: Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327, 1631 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This report was sponsored by the Council of Materials Science and Engineering of the U.S. Department of Energy, Office of Basic Energy Sciences. The authors thank Dr. Linda Horton and Professor Frances Hellman for their support. IMR acknowledges the support from Department of Energy BES under grants DE-FG02-07ER46443 and DE-FG02-08ER46525 for preparing this report. CS acknowledges the support from the National Science Foundation under grant DMR-0855402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. Robertson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, I.M., Schuh, C.A., Vetrano, J.S. et al. Towards an integrated materials characterization toolbox. Journal of Materials Research 26, 1341–1383 (2011). https://doi.org/10.1557/jmr.2011.41

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.41

Navigation