Skip to main content
Log in

Mechanism of La0.6Sr0.4Co0.2Fe0.8O3 cathode degradation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Elemental enrichment behavior on the surface of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) was investigated in order to understand potential degradation mechanism of solid oxide fuel cell cathodes. Surface morphological changes were examined using scanning electron microscopy after heat treatment in the temperature range of 600–900 °C. Submicron-sized precipitates were formed on grain surfaces after heat treatment. Their shapes appeared to be aligned along the surface orientations of the underlying grains. Auger electron spectroscopy and transmission electron microscopy characterization revealed that the precipitate was strontium (Sr)-oxygen (O) based. The formation of Sr–O precipitates was found to increase with increasing temperature and oxygen partial pressure. A defect chemistry model is presented based on the observed phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
TABLE I.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. S.P. Simner, M.D. Anderson, M.H. Engelhard, and J.W. Stevenson: Degradation mechanisms of La-Sr-Co-Fe-O3SOFC cathodes. Electrochem. Solid-State Lett. 9, A478 (2006).

    Article  CAS  Google Scholar 

  2. F. Tietz, A. Mai, and D. Stover: From powder properties to fuel cell performance - A holistic approach for SOFC cathode development. Solid State Ionics 179, 1509 (2008).

    Article  CAS  Google Scholar 

  3. E. Bucher and W. Sitte: Long-term stability of the oxygen exchange properties of (La, Sr)1−z(Co, Fe)O3−δ in dry and wet atmospheres. Solid State Ionics 192, 480 (2011).

    Article  CAS  Google Scholar 

  4. P.A.W.v.d. Heide: Systematic x-ray photoelectron spectroscopic study of La1−xSrx-based perovskite-type oxides. Surf. Interface Anal. 33, 414 (2002).

    Article  Google Scholar 

  5. M.M. Viitanen, R.G. von Welzenis, H.H. Brongersma, and F.P.F. van Berkel: Silica poisoning of oxygen membranes. Solid State Ionics 150, 223 (2002).

    Article  CAS  Google Scholar 

  6. H. Tanaka and M. Misono: Advances in designing perovskite catalysts. Curr. Opin. Solid State Mater. Sci. 5, 381 (2001).

    Article  CAS  Google Scholar 

  7. J.M. Serra, V.B. Vert, M. Betz, V.A.C. Haanappel, W.A. Meulenberg, and F. Tietz: Screening of A-substitution in the system A0.68Sr0.3Fe0.8Co0.2O3-δ for SOFC cathodes. J. Electrochem. Soc. 155, B207 (2008).

    Article  CAS  Google Scholar 

  8. M.A. Pena and J.L.G. Fierro: Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981 (2001).

    Article  CAS  Google Scholar 

  9. T. Shimizu: Effect of electronic structure and tolerance factor on Co oxidation activity of perovskite oxides. Chem. Lett. 1, 1 (1980).

    Article  Google Scholar 

  10. V.E. Henrich: The surfaces of metal oxides. Rep. Prog. Phys. 48, 1481 (1985).

    Article  CAS  Google Scholar 

  11. D.A. Porter and K.E. Eastering: Phase Transformations in Metals and Alloys. 2nd ed. (CRC Press, Boca Raton, FL, 1992); pp. 276–279.

    Book  Google Scholar 

  12. S.N. Ruddlesden and P. Popper: New compounds of the K2NiF4 type. Acta Crystallogr. 10, 538 (1957).

    Article  CAS  Google Scholar 

  13. M. Kubicek, A. Limbeck, T. Fromling, H. Hutter, and J. Fleig: Relationship between cation segregation and the electrochemical oxygen reduction kinetics of La0.6Sr0.4CoO3-δ thin film electrodes. J. Electrochem. Soc. 158, B727 (2011).

    Article  CAS  Google Scholar 

  14. Z. Cai, M. Kubicek, J.R. Fleig, and B. Yildiz: Chemical heterogeneities on La0.6Sr0.4CoO3−δ thin films correlations to cathode surface activity and stability. Chem. Mater. 24, 1116 (2012).

    Article  CAS  Google Scholar 

  15. B. Rahmati, J. Fleig, W. Sigle, E. Bischoff, J. Maier, and M. Ruhle: Oxidation of reduced polycrystalline Nb-doped SrTiO3: Characterization of surface islands. Surf. Sci. 595, 115 (2005).

    Article  CAS  Google Scholar 

  16. R. Meyer, R. Waser, J. Helmbold, and G. Borchardt: Cationic surface segregation in donor-doped SrTiO3 under oxidizing conditions. J. Electroceram. 9, 103 (2002).

    Article  Google Scholar 

  17. K. Gomann, G. Borchardt, A. Gunhold, W. Maus-Friedrichs, and H. Baumann: Ti diffusion in La-doped SrTiO3 single crystals. Phys. Chem. Chem. Phys. 6, 3639 (2004).

    Article  Google Scholar 

  18. W. Jung and H.L. Tuller: Investigation of surface Sr segregation in model thin film solid oxide fuel cell perovskite electrodes. Energy Environ. Sci. 5, 5370 (2012).

    Article  CAS  Google Scholar 

  19. G. Horvath, J. Gerblinger, H. Meixner, and J. Giber: Segregation driving forces in perovskite titanates. Sens. Actuators, B 32, 93 (1996).

    Article  CAS  Google Scholar 

  20. J. Nowotny: Interface defect chemistry of oxide ceramic materials - Unresolved problems. Solid State Ionics 49, 119 (1991).

    Article  CAS  Google Scholar 

  21. A. Gunhold, K. Gomann, L. Beuermann, V. Kempter, G. Borchardt, and W. Maus-Friedrichs: Nanostructures on La-doped SrTiO3 surfaces. Anal. Bioanal.Chem. 375, 924 (2003).

    Article  CAS  Google Scholar 

  22. K. Szot and W. Speier: Surfaces of reduced and oxidized SrTiO3 from atomic force microscopy. Phys. Rev. B 60, 5909 (1999).

    Article  CAS  Google Scholar 

  23. L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, and S.R. Sehlin: Structure and electrical-properties of La1-xSrxCo1-yFeyO3. 2. The system La1-xSrxCo0.2Fe0.8O3. Solid State Ionics 76, 273 (1995).

    Article  CAS  Google Scholar 

  24. J.W. Stevenson, T.R. Armstrong, R.D. Carneim, L.R. Pederson, and W.J. Weber: Electrochemical properties of mixed conducting perovskites La1-xMxCo1-yFeyO3-δ (M = Sr, Ba, Ca). J. Electrochem. Soc. 143, 2722 (1996).

    Article  CAS  Google Scholar 

  25. Y.L. Wang, K. Duncan, E.D. Wachsman, and F. Ebrahimi: The effect of oxygen vacancy concentration on the elastic modulus of fluorite-structured oxides. Solid State Ionics 178, 53 (2007).

    Article  CAS  Google Scholar 

  26. K. Szot, M. Pawelczyk, J. Herion, C. Freiburg, J. Albers, R. Waser, J. Hulliger, J. Kwapulinski, and J. Dec: Nature of the surface layer in ABO(3)-type Perovskites at elevated temperatures. Appl. Phys. A-Mater. Sci. Process. 62, 335 (1996).

    Google Scholar 

  27. L.C. Dufour, G.L. Bertrand, G. Caboche, P. Decorse, A. El Anssari, A. Poirson, and M. Vareille: Fundamental and technological aspects of the surface properties and reactivity of some metal oxides. Solid State Ionics 101, 661 (1997).

    Article  Google Scholar 

  28. M. Konigstein and C.R.A. Catlow: Ab initio quantum mechanical study of the structure and stability of the alkaline earth metal oxides and peroxides. J. Solid State Chem. 140, 103 (1998).

    Article  CAS  Google Scholar 

  29. T. Ishihara: Perovskite Oxide for Solid Oxide Fuel Cells (Springer, New York, NY, 2009); pp. 25–28.

    Book  Google Scholar 

  30. W.D. Copeland and R.A. Swalin: Studies on defect structure of strontium oxide. J. Phys. Chem. Solids 29, 313 (1968).

    Article  CAS  Google Scholar 

  31. R.A. De Souza and J.A. Kilner: Oxygen transport in La1-xSrxMn1-yCoyO3±δ perovskites. Part II. Oxygen surface exchange. Solid State Ionics 126, 153 (1999).

    Article  Google Scholar 

  32. Y. Takeda, R. Kanno, M. Noda, Y. Tomida, and O. Yamamoto: Cathodic polarization phenomena of perovskite oxide electrodes with stabilized zirconia. J. Electrochem. Soc. 134, 2656 (1987).

    Article  CAS  Google Scholar 

  33. J.A. Kilner, R.A. DeSouza, and I.C. Fullarton: Surface exchange of oxygen in mixed conducting perovskite oxides. Solid State Ionics 86-87, 703 (1996).

    Article  Google Scholar 

  34. C.C. Kan and E.D. Wachsman: Identifying drivers of catalytic activity through systematic surface modification of cathode materials. J. Electrochem. Soc. 156, B695 (2009).

    Article  CAS  Google Scholar 

  35. A. Mai, M. Becker, W. Assenmacher, F. Tietz, D. Hathiramani, E. Ivers-Tiffee, D. Stover, and W. Mader: Time-dependent performance of mixed-conducting SOFC cathodes. Solid State Ionics 177, 1965 (2006).

    Article  CAS  Google Scholar 

  36. J.W. Fergus: Effect of cathode and electrolyte transport properties on chromium poisoning in solid oxide fuel cells. Int. J. Hydrogen Energy 32, 3664 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author thanks Junghoon Jang for operating low-angle XRD and Eric Lambert for AES analysis. This work was supported by the Florida Institute for Sustainable Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric D. Wachsman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, D., Gostovic, D. & Wachsman, E.D. Mechanism of La0.6Sr0.4Co0.2Fe0.8O3 cathode degradation. Journal of Materials Research 27, 1992–1999 (2012). https://doi.org/10.1557/jmr.2012.222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.222

Navigation