Skip to main content
Log in

High-strain-rate nanoindentation behavior of fine-grained magnesium alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of temperature and alloying elements on deformation in the high-strain-rate regime were investigated by testing fine-grained magnesium alloys with an average grain size of 2 ∼ 3 μm by a nanoindentation technique. The dynamic hardness measurements aligned well with existing quasistatic data, together spanning a wide range of strain rates, 10−3 ∼ 150/s. The high-rate hardness was influenced by various alloying elements (Al, Li, Y and Zn) to different degrees, consistent with expectations based on solid solution strengthening. Transmission electron microscopy observations of the indented region revealed no evidence for deformation twins for any alloying elements, despite the high strain-rate. The activation energy for deformation in the present alloys was found to be 85 ∼ 300 kJ/mol within the temperature range of 298 ∼ 373 K, corresponding to a dominant deformation mechanism of dislocation glide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Armstrong, I. Codd, R.M. Douthwaite, and N.J. Petch: The plastic deformation of polycrystalline aggregates. Philos. Mag. 7, 45 (1962).

    Article  CAS  Google Scholar 

  2. J.A. Chapman and D.V. Wilson: The room-temperature ductility of fine-grain magnesium. J. Inst. Met. 91, 39 (1962–1963).

    Google Scholar 

  3. H. Somekawa and T. Mukai: Effect of grain refinement on fracture toughness in extruded pure-magnesium. Scr. Mater. 53, 1059 (2005).

    Article  CAS  Google Scholar 

  4. M.R. Barnett: A rationale for the strong dependence of mechanical twinning on grain size. Scr. Mater. 59, 696 (2008).

    Article  CAS  Google Scholar 

  5. S.R. Agnew, M.H. Yoo, and C.N. Tome: Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater. 49, 4277 (2001).

    Article  CAS  Google Scholar 

  6. A. Akhtar and E. Teghtsoonian: Substitutional solution hardening of magnesium single crystals. Philos. Mag. 25, 897 (1972).

    Article  CAS  Google Scholar 

  7. S. Miura, S. Imagawa, T. Toyoda, K. Ohkubo, and T. Mohri: Effect of rare-earth elements Y and Dy on the deformation behavior of Mg alloy single crystals. Mater. Trans. 49, 952 (2008).

    Article  CAS  Google Scholar 

  8. H. Watanabe, A. Owashi, T. Uesugi, Y. Takigawa, and K. Higashi: Grain boundary relaxation in fine-grained magnesium solid solutions. Philos. Mag. 91, 4158 (2011).

    Article  CAS  Google Scholar 

  9. Y. Chino, M. Kado, T. Ueda, and M. Mabuchi: Solid solution strengthening for Mg-3%Al and Mg-0.06%Ca alloys. Metall. Mater. Trans. A 42, 1965 (2011).

    Article  CAS  Google Scholar 

  10. M.Z. Butt, I.M. Ghauri, R. Qamar, K.M. Hashmi, and P. Feltham: Solid-solution hardening in dilute alloys. Acta Metall. 29, 829 (1981).

    Article  CAS  Google Scholar 

  11. H. Somekawa, T. Inoue, A. Singh, and T. Mukai: Deformation mechanism in the crack-tip region of fine-grained magnesium alloy. Metall. Mater. Trans. A 42, 2475 (2011).

    Article  CAS  Google Scholar 

  12. ASM Specialty Handbook: Magnesium and Magnesium Alloys ({ASM International, Materials Park, OH, 1999).

  13. J. Koike: Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature. Metall. Mater. Trans. A 36, 1689 (2005).

    Article  Google Scholar 

  14. T. Mukai, M. Yamanoi, H. Watanabe, and K. Higashi: Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scr. Mater. 45, 89 (2001).

    Article  CAS  Google Scholar 

  15. B. Li, S. Joshi, K. Azevedo, E. Ma, K.T. Ramesh, R.B. Figueiredo, and T.G. Langdon: Dynamic testing at high strain-rates of an ultrafine-grained magnesium alloy processed by ECAP. Mater. Sci. Eng., A 517, 24 (2009).

    Article  Google Scholar 

  16. H. Watanabe and K. Ishikawa: Effect of texture on high temperature deformation behavior at high strain-rates in a Mg-3Al-1Zn alloy. Mater. Sci. Eng., A 523, 304 (2009).

    Article  Google Scholar 

  17. M.T. Sucker, M.F. Horstemeyer, P.M. Gullett, H.E. Kadiri, and W.R. Whittington: Anisotropic effects on the strain-rate dependence of a wrought magnesium alloy. Scr. Mater. 60, 182 (2009).

    Article  Google Scholar 

  18. G. Wan, B.L. Wu, Y.D. Zhang, G.Y. Sha, and C. Esling: Anisotropy of dynamic behavior of extruded AZ31 magnesium alloy. Mater. Sci. Eng., A 527, 2915 (2010).

    Article  Google Scholar 

  19. G. Wan, B.L. Wu, Y.H. Zhao, Y.D. Zhang, and C. Esling: Strain-rate sensitivity of textured AZ31 alloy under impact deformation. Scr. Mater. 65, 461 (2011).

    Article  CAS  Google Scholar 

  20. T. Mukai, M. Yamanoi, H. Watanabe, K. Ishikawa, and K. Higashi: Effect of grain refinement on tensile ductility in ZK60 magnesium alloy under dynamic loading. Mater. Trans. 42, 1177 (2001).

    Article  CAS  Google Scholar 

  21. K. Ishikawa, H. Watanabe, and T. Mukai: High temperature compressive properties over a wide range of strain-rates in an AZ31 magnesium alloy. J. Mater. Sci. 40, 1577 (2005).

    Article  CAS  Google Scholar 

  22. T. Mukai, M. Yamanoi, and K. Higashi: Processing of ductile magnesium alloy under dynamic tensile loading. Mater. Trans. 42, 2652 (2001).

    Article  CAS  Google Scholar 

  23. M.A. Meyers, O. Vohringer, and V.A. Lubarda: The onset of twinning in metals; A constitutive description. Acta Mater. 49, 4025 (2001).

    Article  CAS  Google Scholar 

  24. D. Lahaie, J.D. Embury, M.M. Chadwick, and G.T. Gray: A note on the deformation of fine-grained magnesium alloys. Scr. Metall. Mater. 27, 139 (1992).

    Article  CAS  Google Scholar 

  25. G. Constantinides, C.A. Tweedie, D.M. Holbrook, P. Barragan, J.F. Smith, and K.J. Van Vliet: Quantifying deformation and energy dissipation of polymeric surfaces under localized impact. Mater. Sci. Eng., A 489, 403 (2008).

    Google Scholar 

  26. J.R. Trelewicz and C.A. Schuh: The Hall-Petch breakdown at high strain-rates: Optimizing nanocrystalline grain size for impact applications. Appl. Phys. Lett. 93, 171916 (2008).

    Article  Google Scholar 

  27. Y. Tirupataiah and G. Sundararajan: A dynamic indentation technique for the characterization of the high strain-rate plastic flow behavior of ductile metals and alloys. J. Mech. Phys. Solids 39, 243 (1991).

    Article  Google Scholar 

  28. G. Constantinides, C.A. Tweedie, N. Savva, J.F. Smith, and K.J. Van Vliet: Quantitative impact testing of energy dissipation at surfaces. Exp. Mech. 49, 511 (2009).

    Article  CAS  Google Scholar 

  29. Z. Kalcioglu, M. Qu, K.E. Strawhecker, T. Shazly, E. Edelman, M.R. VanLandingham, J.F. Smith, and K.J. Van Vliet: Dynamic impact indentation of hydrated biological tissues and tissue surrogate gels. Philos. Mag. 91, 1339 (2011).

    Article  CAS  Google Scholar 

  30. H. Somekawa and C.A. Schuh: Effect of solid solution elements on nanoindentation hardness, rate dependence and incipient plasticity in fine-grained magnesium alloys. Acta Mater. 59, 7554 (2011).

    Article  CAS  Google Scholar 

  31. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1984).

    Google Scholar 

  32. C.M. Sellars and W.J. McTegart: On the mechanism of hot deformation. Acta Metall. 14, 1136 (1966).

    Article  CAS  Google Scholar 

  33. D.S. Tabor: The Hardness of Metals (Clarendon Press, Oxford, 1951).

    Google Scholar 

  34. H.J. Frost and M.F. Ashby: Deformation Mechanism Map (Pergamon press, Oxford, 1982).

    Google Scholar 

  35. S.X. Song, J.A. Horton, N.J. Kim, and T.G. Nieh: Deformation behavior of a twin-roll-cast Mg-6Zn-0.5Mn-0.3Cu-0.02Zr alloy at intermediate temperature. Scr. Mater. 56, 393 (2007).

    Article  CAS  Google Scholar 

  36. C.L. Wang, T. Mukai, and T.G. Nieh: Room temperature creep of fine-grained pure Mg: A direct comparison between nanoindentation and uniaxial tension. J. Mater. Res. 24, 1615 (2009).

    Article  CAS  Google Scholar 

  37. H. Somekawa and T. Mukai: Nanoindentation creep behavior of grain boundary in pure magnesium. Philos. Mag. Lett. 90, 883 (2010).

    Article  CAS  Google Scholar 

  38. P.G. Oberson and S. Ankem: The effect of time-dependent twinning on low temperature creep of an alpha-titanium alloy. Int. J. Plast. 25, 881 (2009).

    Article  CAS  Google Scholar 

  39. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell: Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Mater. 52, 5093 (2004).

    Article  CAS  Google Scholar 

  40. J.A. Yasi, L.G. Erctor, and D.R. Trinkle: First-principles data for solid solution strengthening of magnesium: From geometry and chemistry to properties. Acta Mater. 58, 5704 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. A. F. Schwartzman (Massachusetts Institute of Technology) and Dr. A. Singh (National Institute for Materials Science) for their help with the indentation method and TEM observation, respectively. This work was supported at MIT by the US Army Research Office under grant W911QX-09-P-0009, by the Institute for Soldier Nanotechnologies and by the JSPS Grant-in-Aid for Young Scientists (B) No. 21760564.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Somekawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somekawa, H., Schuh, C.A. High-strain-rate nanoindentation behavior of fine-grained magnesium alloys. Journal of Materials Research 27, 1295–1302 (2012). https://doi.org/10.1557/jmr.2012.52

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.52

Navigation