Skip to main content
Log in

Interpreting the ductility of nanocrystalline metals

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocrystalline (NC) metals are known for having excellent strength but perceived to have poor ductility. Miniature tensile tests on NC Ni-Fe measured ultimate strengths of 2 GPa and elongations, by digital image correlation, of up to 10%. Detailed examination of the fracture surface revealed dimpled rupture and cross-section reduction up to 75%, suggesting an intrinsic ability for small grained Ni-Fe to accommodate plasticity. A survey of published studies on NC metals reveals that this behavior is quite common; despite low macroscopic elongation, NC metals often achieve extensive deformation suggesting good intrinsic ductility. Unfortunately, the common sheet-like configuration of NC tensile specimens muddies a simple evaluation of ductility based on elongation, since thin and wide geometries promote localized necking that expedites catastrophic failure. This paper presents a compact review of ductility concepts and literature to interpret the experimental ductility measurements of an electrodeposited nickel alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Table I
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E.O. Hall: The deformation and ageing of mild steel. 3. Discussion of results. Proc. Phys. Soc. London, Sect. B 64 (381), 747 (1951).

    Article  Google Scholar 

  2. N.J. Petch: The cleavage strength of polycrystals. J. Iron. Steel Res. Int. 174 (1), 25 (1953).

    CAS  Google Scholar 

  3. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51 (4), 427 (2006).

    Article  CAS  Google Scholar 

  4. K. Jonnalagadda, I. Chasiotis, S. Yagnamurthy, J. Lambros, J. Pulskamp, R. Polcawich, and M. Dubey: Experimental investigation of strain rate dependence of nanocrystalline Pt films. Exp. Mech. 50 (1), 25 (2010).

    Article  CAS  Google Scholar 

  5. K. Jonnalagadda, N. Karanjgaokar, I. Chasiotis, J. Chee, and D. Peroulis: Strain rate sensitivity of nanocrystalline Au films at room temperature. Acta Mater. 58 (14), 4674 (2010).

    Article  CAS  Google Scholar 

  6. P.G. Sanders, J.A. Eastman, and J.R. Weertman: Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 45 (10), 4019 (1997).

    Article  CAS  Google Scholar 

  7. G.W. Nieman, J.R. Weertman, and R.W. Siegel: Mechanical behavior of nanocrystalline Cu and Pd. J. Mater. Res. 6 (5), 1012 (1991).

    Article  CAS  Google Scholar 

  8. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino: Strength and ductility of ultrafine grained aluminum and iron produced by arb and annealing. Scr. Mater. 47 (12), 893 (2002).

    Article  CAS  Google Scholar 

  9. K.M. Youssef, R.O. Scattergood, K.L. Murty, J.A. Horton, and C.C. Koch: Ultrahigh strength and high ductility of bulk nanocrystalline copper. Appl. Phys. Lett. 87 (9), 091904-1-091904-3 (2005).

  10. Y.F. Shen, L. Lu, Q.H. Lu, Z.H. Jin, and K. Lu: Tensile properties of copper with nano-scale twins. Scr. Mater. 52 (10), 989 (2005).

    Article  CAS  Google Scholar 

  11. Y.M. Wang, A.V. Hamza, and E. Ma: Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 54 (10), 2715 (2006).

    Article  CAS  Google Scholar 

  12. M. Legros, B.R. Elliott, M.N. Rittner, J.R. Weertman, and K.J. Hemker: Microsample tensile testing of nanocrystalline metals. Philos. Mag. A 80 (4), 1017 (2000).

    Article  CAS  Google Scholar 

  13. T.E. Buchheit, S.H. Goods, P.G. Kotula, and P.F. Hlava: Electrodeposited 80ni-20fe (permalloy) as a structural material for high aspect ratio microfabrication. Mater. Sci. Eng., A 432 (1-2), 149 (2006).

    Article  CAS  Google Scholar 

  14. C. Gu, J. Lian, Z. Jiang, and Q. Jiang: Enhanced tensile ductility in an electrodeposited nanocrystalline Ni. Scr. Mater. 54 (4), 579 (2006).

    Article  CAS  Google Scholar 

  15. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, and S. Suresh: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51 (17), 5159 (2003).

    Article  CAS  Google Scholar 

  16. H. Li and F. Ebrahimi: Tensile behavior of a nanocrystalline ni-fe alloy. Acta Mater. 54 (10), 2877 (2006).

    Article  CAS  Google Scholar 

  17. N. Wang, Z.R. Wang, K.T. Aust, and U. Erb: Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique. Mater. Sci. Eng., A 237 (2), 150 (1997).

    Article  Google Scholar 

  18. F. Dalla Torre, P. Spatig, R. Schaublin, and M. Victoria: Deformation behaviour and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel. Acta Mater. 53 (8), 2337 (2005).

    Article  CAS  Google Scholar 

  19. F. Dalla Torre, H. Van Swygenhoven, and M. Victoria: Nanocrystalline electrodeposited Ni: Microstructure and tensile properties. Acta Mater. 50 (15), 3957 (2002).

    Article  Google Scholar 

  20. I. Brooks, G. Palumbo, G.D. Hibbard, Z. Wang, and U. Erb: On the intrinsic ductility of electrodeposited nanocrystalline metals. J. Mater. Sci. 46 (24), 7713 (2011).

    Article  CAS  Google Scholar 

  21. H. Zhang, Z. Jiang, H. Lian, and Q. Jiang: Strain rate dependence of tensile ductility in an electrodeposited Cu with ultrafine grain size. Mater. Sci. Eng., A 479 (1-2), 136 (2008).

    Article  CAS  Google Scholar 

  22. D.S. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, and K.J. Hemker: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54 (8), 2253 (2006).

    Article  CAS  Google Scholar 

  23. G.J. Fan, L.F. Fu, D.C. Qiao, H. Choo, P.K. Liaw, and N.D. Browning: Grain growth in a bulk nanocrystalline Co alloy during tensile plastic deformation. Scr. Mater. 54 (12), 2137 (2006).

    Article  CAS  Google Scholar 

  24. J.A. Sharon, P.C. Su, F.B. Prinz, and K.J. Hemker: Stress-driven grain growth in nanocrystalline Pt thin films. Scr. Mater. 64 (1), 25 (2011).

    Article  CAS  Google Scholar 

  25. Y.M. Wang, E. Ma, and M.W. Chen: Enhanced tensile ductility and toughness in nanostructured Cu. Appl. Phys. Lett. 80 (13), 2395 (2002).

    Article  CAS  Google Scholar 

  26. N. Krasilnikov, W. Lojkowski, Z. Pakiela, and R. Valiev: Tensile strength and ductility of ultra-fine-grained nickel processed by severe plastic deformation. Mater. Sci. Eng., A 397 (1-2), 330 (2005).

    Article  CAS  Google Scholar 

  27. V.L. Tellkamp, A. Melmed, and E.J. Lavernia: Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy. Metall. Mater. Trans. A 32 (9), 2335 (2001).

    Article  Google Scholar 

  28. L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, and K. Lu: Ultrahigh strength and high electrical conductivity in copper. Science 304 (5669), 422 (2004).

    Article  CAS  Google Scholar 

  29. X.J. Wu, L.G. Du, H.F. Zhang, J.F. Liu, Y.S. Zhou, Z.Q. Li, L.Y. Xiong, and Y.L. Bai: Synthesis and tensile property of nanocrystalline metal copper. Nanostruct. Mater. 12 (1-4), 221 (1999).

    Article  Google Scholar 

  30. H. Conrad and D. Yang: Effect of an electric field on the plastic deformation kinetics of electrodeposited Cu at low and intermediate temperatures. Acta Mater. 50 (11), 2851 (2002).

    Article  CAS  Google Scholar 

  31. A.A. Karimpoor, U. Erb, K.T. Aust, and G. Palumbo: High strength nanocrystalline cobalt with high tensile ductility. Scr. Mater. 49 (7), 651 (2003).

    Article  CAS  Google Scholar 

  32. R.K. Guduru, K.L. Murty, K.M. Youssef, R.O. Scattergood, and C.C. Koch: Mechanical behavior of nanocrystalline copper. Mater. Sci. Eng., A 463 (1-2), 14 (2007).

    Article  CAS  Google Scholar 

  33. S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz, and K. Han: Tensile properties of in situ consolidated nanocrystalline Cu. Acta Mater. 53 (5), 1521 (2005).

    Article  CAS  Google Scholar 

  34. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe: Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17 (1), 5 (2002).

    Article  CAS  Google Scholar 

  35. Y.H. Zhao, Y.Z. Guo, Q. Wei, A.M. Dangelewiez, Y.T. Zhu, T.G. Langdon, Y.Z. Zhou, E.J. Lavernia, and C. Xu: Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu. Scr. Mater. 59 (6), 627 (2008).

    Article  CAS  Google Scholar 

  36. V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, and R.Z. Valiev: Influence of ECAP routes on the microstructure and properties of pure Ti. Mater. Sci. Eng., A 299 (1-2), 59 (2001).

    Article  Google Scholar 

  37. Y.M. Wang and E. Ma: Temperature and strain rate effects on the strength and ductility of nanostructured copper. Appl. Phys. Lett. 83 (15), 3165 (2003).

    Article  CAS  Google Scholar 

  38. C.C. Koch: Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 49 (7), 657 (2003).

    Article  CAS  Google Scholar 

  39. M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55 (12), 4041 (2007).

    Article  CAS  Google Scholar 

  40. C.C. Koch: Ductility in nanostructured and ultra fine-grained materials: Recent evidence for optimism. J. Metastable Nanocryst. Mater. 18, 9–20 (2003).

    CAS  Google Scholar 

  41. C.C. Koch, D.G. Morris, K. Lu, and A. Inoue: Ductility of nanostructured materials. MRS Bull. 24 (2), 54 (1999).

    Article  CAS  Google Scholar 

  42. C.C. Koch, K.M. Youssef, R.O. Scattergood, and K.L. Murty: Breakthroughs in optimization of mechanical properties of nanostructured metals and alloys. Adv. Eng. Mater. 7 (9), 787 (2005).

    Article  CAS  Google Scholar 

  43. Y.M. Wang and E. Ma: Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 52 (6), 1699 (2004).

    Article  CAS  Google Scholar 

  44. E. Ma: Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM 58 (4), 49 (2006).

    Article  CAS  Google Scholar 

  45. D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, and E. Lavernia: Al-mg alloy engineered with bimodal grain size for high strength and increased ductility. Scr. Mater. 49 (4), 297 (2003).

    Article  CAS  Google Scholar 

  46. Y. Wang, M. Chen, F. Zhou, and E. Ma: High tensile ductility in a nanostructured metal. Nature 419 (6910), 912 (2002).

    Article  CAS  Google Scholar 

  47. Y. Zhao, T. Topping, J.F. Bingert, J.J. Thornton, A.M. Dangelewicz, Y. Li, W. Liu, Y. Zhu, Y. Zhou, and E.J. Lavernia: High tensile ductility and strength in bulk nanostructured nickel. Adv. Mater. 20 (16), 3028 (2008).

    Article  CAS  Google Scholar 

  48. G. He, J. Eckert, W. Loser, and L. Schultz: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2 (1), 33 (2003).

    Article  CAS  Google Scholar 

  49. E. Ma: Nanocrystalline materials: Controlling plastic instability. Nat. Mater. 2 (1), 7 (2003).

    Article  CAS  Google Scholar 

  50. H.A. Padilla II, B.L. Boyce, B.G. Clark, and J.R. Michael: Grain-size scaling transitions in the fatigue behavior of ultrafine and nanocrystalline Ni-Fe. Acta Mater. (submitted).

  51. J. Mayer, L.A. Giannuzzi, T. Kamino, and J. Michael: Tem sample preparation and Fib-induced damage. MRS Bull. 32 (5), 400 (2007).

    Article  CAS  Google Scholar 

  52. F. Ebrahimi, Z. Ahmed, and H.Q. Li: Tensile properties of electrodeposited nanocrystalline Fcc metals. Mater. Manuf. Processes 21 (7), 687 (2006).

    Article  CAS  Google Scholar 

  53. H. Li, F. Ebrahimi, H. Choo, and P.K. Liaw: Grain size dependence of tensile behavior in nanocrystalline ni-fe alloys. J. Mater. Sci. 41 (22), 7636 (2006).

    Article  CAS  Google Scholar 

  54. H. Li, H. Choo, and P.K. Liaw: The effect of temperature on strain rate sensitivity in a nanocrystalline Ni-Fe alloy. J. Appl.Phys. 101 (6), 063536-1-063536-7 (2007).

  55. Q. Wei: Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses. J. Mater. Sci. 42 (5), 1709 (2007).

    Article  CAS  Google Scholar 

  56. X.Y. Qin, X.G. Zhu, S. Gao, L.F. Chi, and J.S. Lee: Compression behaviour of bulk nanocrystalline ni-fe. J. Phys. Condens. Matter 14 (10), 2605 (2002).

    Article  CAS  Google Scholar 

  57. W.A. Backofen: Deformation processing. Metall. Trans. 4 (12), 2679 (1973).

    Article  CAS  Google Scholar 

  58. R. Hill: On discontinuous plastic states, with special reference to localized necking in thin sheets. J. Mech. Phys. Solids 1 (1), 19 (1952).

    Article  Google Scholar 

  59. H.J. Lee, P. Zhang, and J.C. Bravman: Tensile failure by grain thinning in micromachined aluminum thin films. J. Appl. Phys. 93 (3), 1443 (2003).

    Article  CAS  Google Scholar 

  60. Y.H. Zhao, Y.Z. Guo, Q. Wei, T.D. Topping, A.M. Dangelewicz, Y.T. Zhu, T.G. Langdon, and E.J. Lavernia: Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves. Mater. Sci. Eng., A 525 (1-2), 68 (2009).

    Article  CAS  Google Scholar 

  61. Y.M. Wang, S. Cheng, Q.M. Wei, E. Ma, T.G. Nieh, and A. Hamza: Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni. Scr. Mater. 51 (11), 1023 (2004).

    Article  CAS  Google Scholar 

  62. H.Q. Li and F. Ebrahimi: Transition of deformation and fracture behaviors in nanostructured face-centered-cubic metals. Appl. Phys. Lett. 84 (21), 4307 (2004).

    Article  CAS  Google Scholar 

  63. H.Q. Li and F. Ebrahimi: Ductile-to-brittle transition in nanocrystalline metals. Adv. Mater. 17 (16), 1969 (2005).

    Article  CAS  Google Scholar 

  64. C. Cheung, G. Palumbo, and U. Erb: Synthesis of nanocrystalline permalloy by electrodeposition. Scr. Metall. Mater. 31 (6), 735 (1994).

    Article  CAS  Google Scholar 

  65. A. Hasnaoui, H. Van Swygenhoven, and P.M. Derlet: Dimples on nanocrystalline fracture surfaces as evidence for shear plane formation. Science 300 (5625), 1550 (2003).

    Article  CAS  Google Scholar 

  66. T.L. Anderson: Fracture Mechanics: Fundamentals and Applications (Taylor & Francis, Boca Raton, FL, 2005).

    Book  Google Scholar 

  67. Y. Yang, B. Imasogie, G.J. Fan, P.K. Liaw, and W.O. Soboyejo: Fatigue and fracture of a bulk nanocrystalline NiFe alloy. Metall. Mater.Trans. A 39 (5), 1145 (2008).

    Article  CAS  Google Scholar 

  68. G. Taylor: Thermally-activated deformation of Bcc metals and alloys. Prog. Mater. Sci. 36, 29 (1992).

    Article  CAS  Google Scholar 

  69. G. Schoeck: The activation energy of dislocation movement. Phys. Status Solidi B 8 (2), 499 (1965).

    Article  CAS  Google Scholar 

  70. Y.M. Wang, A.V. Hamza, and E. Ma: Activation volume and density of mobile dislocations in plastically deforming nanocrystalline Ni. Appl. Phys. Lett. 86 (24), 241917-1-241917-3 (2005).

  71. D.S. Gianola, D.H. Warner, J.F. Molinari, and K.J. Hemker: Increased strain rate sensitivity due to stress-coupled grain growth in nanocrystalline Al. Scr. Mater. 55 (7), 649 (2006).

    Article  CAS  Google Scholar 

  72. H. Van Swygenhoven, P.M. Derlet, and A. Hasnaoui: Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys. Rev. B: Condens. Matter 66 (2), 024101 (2002).

    Article  CAS  Google Scholar 

  73. R.J. Asaro and S. Suresh: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53 (12), 3369 (2005).

    Article  CAS  Google Scholar 

  74. O.D. Sherby and J. Wadsworth: Superplasticity - recent advances and future-directions. Prog. Mater. Sci. 33 (3), 169 (1989).

    Article  CAS  Google Scholar 

  75. H. Van Swygenhoven and P.M. Derlet: Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B: Condens. Matter 64 (22), 224105 (2001).

    Article  CAS  Google Scholar 

  76. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang: Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51 (2), 387 (2003).

    Article  CAS  Google Scholar 

  77. R.L. Coble: A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34 (6), 1679 (1963).

    Article  Google Scholar 

  78. A.H. Chokshi, A. Rosen, J. Karch, and H. Gleiter: On the validity of the Hall-Petch relationship in nanocrystalline materials. Scr. Metall. 23 (10), 1679 (1989).

    Article  CAS  Google Scholar 

  79. R.A. Masumura, P.M. Hazzledine, and C.S. Pande: Yield stress of fine grained materials. Acta Mater. 46 (13), 4527 (1998).

    Article  CAS  Google Scholar 

  80. P.G. Sanders, M. Rittner, E. Kiedaisch, J.R. Weertman, H. Kung, and Y.C. Lu: Creep of nanocrystalline Cu, Pd, and al-Zr. Nanostruct. Mater. 9 (1-8), 433 (1997).

    Article  CAS  Google Scholar 

  81. B. Cai, Q.P. Kong, L. Lu, and K. Lu: Interface controlled diffusional creep of nanocrystalline pure copper. Scr. Mater. 41 (7), 755 (1999).

    Article  CAS  Google Scholar 

  82. L. Lu, M.L. Sui, and K. Lu: Superplastic extensibility of nanocrystalline copper at room temperature. Science 287 (5457), 1463 (2000).

    Article  CAS  Google Scholar 

  83. A. Considère: Mémoire sur l’emploi du fer et de l’acier dons les constructions. Annales des Ponts et Chaussées. 9, 574 (1885).

    Google Scholar 

  84. E.W. Hart: Theory of the tensile test. Acta Metall. 15 (2), 351 (1967).

    Article  CAS  Google Scholar 

  85. J.J. Jonas, R.A. Holt, and C.E. Coleman: Plastic stability in tension and compression. Acta Metall. 24 (10), 911 (1976).

    Article  Google Scholar 

  86. U.F. Kocks, J.J. Jonas, and H. Mecking: The development of strain-rate gradients. Acta Metall. 27 (3), 419 (1979).

    Article  Google Scholar 

  87. A.K. Ghosh: Tensile instability and necking in materials with strain hardening and strain-rate hardening. Acta Metall. 25 (12), 1413 (1977).

    Article  Google Scholar 

  88. J.W. Hutchinson and K.W. Neale: Influence of strain-rate sensitivity on necking under uniaxial tension.Acta Metallurgica. 25 (8), 839 (1977).

    Article  CAS  Google Scholar 

  89. I.H. Lin, J.P. Hirth, and E.W. Hart: Plastic instability in uniaxial tension tests. Acta Metall. 29 (5), 819 (1981).

    Article  CAS  Google Scholar 

  90. T. Pardoen, M. Coulombier, A. Boe, A. Safi, C. Brugger, S. Ryelandt, P. Carbonnelle, S. Gravier, and J.P. Raskin: Ductility of thin metallic films. Mater. Sci. Forum 633-634 (2010).

  91. F. Ebrahimi, G.R. Bourne, M.S. Kelly, and T.E. Matthews: Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostruct. Mater. 11 (3), 343 (1999).

    Article  CAS  Google Scholar 

  92. V. Tvergaard: Necking in tensile bars with rectangular cross-section. Comput. Meth. Appl. Mech. Eng. 103 (1-2), 273 (1993).

    Article  Google Scholar 

  93. ASTM E8/E8M - 11: Standard Test Methods for Tension Testing of Metallic Materials, 27 (ASTM International, West Conshohocken, PA, (2011).

    Google Scholar 

  94. M.J. Barba: Resistance des Matériaux. Épreuves de résistance a la traction. Etude sur les allongements des métaux après rupture. Mem. Soc. Ing. Civils. 1, 682 (1880).

    Google Scholar 

  95. W.C. Unwin: Tensile tests of mild steel; and the relation of elongation to the size of the test-bar. Proc. Inst. Civ. Eng. Civ. Eng. 170, 233 (1903).

    Google Scholar 

  96. E.B. Kula and N.H. Fahey: Effect of specimen geometry on determination of elongation in sheet tension specimens. Mater. Res. Stand. 1, 631 (1961).

    Google Scholar 

  97. K.M. Youssef, R.O. Scattergood, K.L. Murty, and C.C. Koch: Ultratough nanocrystalline copper with a narrow grain size distribution. Appl. Phys. Lett. 85 (6), 929 (2004).

    Article  CAS  Google Scholar 

  98. D.S. Gianola, B.G. Mendis, X.M. Cheng, and K.J. Hemker: Grain-size stabilization by impurities and effect on stress-coupled grain growth in nanocrystalline Al thin films. Mater. Sci. Eng., A 483-484, 637 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank M. Rye for TEM specimen prep, Dr. B.G. Clark for TEM imaging, and Dr. A.M. Rowen for electro-deposition. This work was funded by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Specimen preparation and electron microscopy characterization was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract No. DE-AC52-06NA25396) and Sandia National Laboratories (Contract No. DE-AC04-94AL85000). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad L. Boyce.

Additional information

This work of authorship was prepared as an account of work sponsored by an agency of the United States Government. Accordingly, the United States Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so for United States Government purposes. Neither Sandia Corporation, the United States Government, nor any agency thereof, nor any of their employees make any warranty, express or imply, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by Sandia Corporation, the United States Government, or any agency thereof. The views and opinions expressed herein do not necessarily state or reflect those of Sandia Corporation, the United States Government or any agency thereof.

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharon, J.A., Padilla II, H.A. & Boyce, B.L. Interpreting the ductility of nanocrystalline metals. Journal of Materials Research 28, 1539–1552 (2013). https://doi.org/10.1557/jmr.2013.139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.139

Navigation