Skip to main content
Log in

Thermal conductivity of porous materials

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Incorporation of porosity into a monolithic material decreases the effective thermal conductivity. Porous ceramics were prepared by different methods to achieve pore volume fractions from 4 to 95%. A toolbox of analytical relations is proposed to describe the effective thermal conductivity as a function of solid phase thermal conductivity, pore thermal conductivity, and pore volume fraction (νp). For νp < 0.65, the Maxwell–Eucken relation for closed porosity and Landauer relation for open porosity give good agreement to experimental data on tin oxide, alumina, and zirconia ceramics. For νp > 0.65, the thermal conductivity of kaolin-based foams and calcium aluminate foams was well described by the Hashin Shtrikman upper bound and Russell’s relation. Finally, numerical simulation on artificially generated microstructures yields accurate predictions of thermal conductivity when fine detail of the spatial distribution of the phases needs to be accounted for, as demonstrated with a bio-aggregate material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
TABLE II.
TABLE III.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.

Similar content being viewed by others

References

  1. W. Schulle and E. Schlegel: Fundamentals and properties of refractory thermal insulating materials (High-temperature insulating materials), in Ceramic Monographs–Handbook of Ceramics, Supplement to Interceram. 40(7), No. 2.6.3, 1–12 (1991).

    Google Scholar 

  2. D.S. Smith, S. Fayette, S. Grandjean, C. Martin, R. Telle, and T. Tonessen: Thermal resistance of grain boundaries in alumina ceramics and refractories. J. Am. Ceram. Soc. 86, 105–111 (2003).

    CAS  Google Scholar 

  3. H.S. Yang, G.R. Bai, L.J. Thompson, and J.A. Eastman: Interfacial thermal resistance in nanocrystalline yttria stabilized zirconia. Acta Mater. 50, 2309–2317 (2002).

    CAS  Google Scholar 

  4. A. Michot, D.S. Smith, S. Degot, and C. Gault: Thermal conductivity and specific heat of kaolinite: Evolution with thermal treatment. J. Eur. Ceram. Soc. 29, 347–353 (2008).

    Google Scholar 

  5. F.R. Charvat and W.D. Kingery: Thermal conductivity: XIII, effect of microstructure on conductivity of single-phase ceramics. J. Am. Ceram. Soc. 40, 306–315 (1957).

    CAS  Google Scholar 

  6. J. Bourret, E. Prudhomme, S. Rossignol, and D.S. Smith: Thermal conductivity of geomaterial foams based on silica fume. J. Mater. Sci. 47, 391–396 (2012).

    CAS  Google Scholar 

  7. H.S. Carslaw and J.C. Jaeger: Conduction of Heat in Solids (Oxford University Press, London, 1959).

    Google Scholar 

  8. M.J. Assael, M. Dix, K. Gialou, L. Vozar, and W.A. Wakeham: Application of the transient hot-wire technique to the measurement of the thermal conductivity of solids. Int. J. Thermophys. 23(3), 615–633 (2002).

    CAS  Google Scholar 

  9. S. Gustafsson: Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 62(3), 797–804 (1991).

    CAS  Google Scholar 

  10. A. Degiovanni: Thermal diffusivity and flash method. Rev. Gen. Therm. 185, 420–441 (1977).

    Google Scholar 

  11. W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679–1684 (1961).

    CAS  Google Scholar 

  12. P.G. Klemens: Thermal conductivity and lattice vibrational modes. Solid State Phys. 7, 1–98 (1958).

    CAS  Google Scholar 

  13. R. Berman: The thermal conductivity of some polycrystalline solids at low temperatures. Proc. Phys. Soc. London, Sect. A 65, 1029–1040 (1952).

    Google Scholar 

  14. S. Raghavan, H. Wang, R.B. Dinwiddie, W.D. Porter, and M.J. Mayo: The effect of grain size, porosity and yttria content on the thermal conductivity of nanocrystalline zirconia. Scr. Mater. 39, 1119–1125 (1998).

    CAS  Google Scholar 

  15. C. Kittel: Interpretation of the thermal conductivity of glasses. Phys. Rev. 75, 972–974 (1949).

    CAS  Google Scholar 

  16. J. Fleig and J. Maier: A finite element study on the grain boundary impedance of different microstructures. J. Electrochem. Soc. 145, 2081–2089 (1998).

    CAS  Google Scholar 

  17. D.S. Smith, S. Grandjean, J. Absi, S. Founyapte Tonyo, and S. Fayette: Grain boundary thermal resistance in polycrystalline oxides: Alumina, tin oxide and magnesia. High Temp. High Press. 35–36, 93–99 (2004).

    Google Scholar 

  18. D.A. Young and H.J. Maris: Lattice-dynamical calculation of the Kapitza resistance between fcc lattices. Phys. Rev. B: Condens. Matter 40, 3685–3693 (1989).

    CAS  Google Scholar 

  19. P.G. Collishaw and J.R.G. Evans: An assessment of expressions for the apparent thermal conductivity of cellular materials. J. Mater. Sci. 29, 2261–2273 (1994).

    CAS  Google Scholar 

  20. A.L. Loeb: Thermal conductivity: VIII, a theory of thermal conductivity of porous materials. J. Am. Ceram. Soc. 37, 96–99 (1954).

    CAS  Google Scholar 

  21. J. Maxwell: A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1892).

    Google Scholar 

  22. Z. Hashin and S. Shtrikman: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 3125–3131 (1962).

    CAS  Google Scholar 

  23. L. Rayleigh: On the influence of obstacles arranged in rectangular order upon the properties of medium. Philos. Mag. 5(34), 481–502 (1892).

    Google Scholar 

  24. R. Landauer: The electrical resistance of binary metallic mixtures. J. Appl. Phys. 23, 779–784 (1952).

    CAS  Google Scholar 

  25. G. Ticha, W. Pabst, and D.S. Smith: Predictive model for the thermal conductivity of porous materials with matrix-inclusion type microstructure. J. Mater. Sci. 40, 5045–5047 (2005).

    CAS  Google Scholar 

  26. H. Russell: Principles of heat flow in porous insulators. J. Am. Ceram. Soc. 18, 1–5 (1935).

    CAS  Google Scholar 

  27. M.F. Ashby: The properties of foams and lattices. Philos. Trans. R. Soc. London, Ser. A 364, 15–30 (2006).

    CAS  Google Scholar 

  28. E. Litovsky, M. Shapiro, and A. Shavit: Gas pressure and temperature dependances of thermal conductivity of porous ceramic materials: Part 2, refractories and ceramics with porosity exceeding 30%. J. Am. Ceram. Soc. 79(5), 1366–1376 (1996).

    CAS  Google Scholar 

  29. G. Reichenauer, U. Heinemann, and H.P. Ebert: Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity. Colloids Surf., A 300, 204–210 (2007).

    CAS  Google Scholar 

  30. J.S.Q. Zeng, P.C. Stevens, and A.J. Hunt: Thin-film-heater thermal conductivity apparatus and measurement of thermal conductivity of silica aerogel. Int. J. Heat Mass Transfer 39(11), 2311–2317 (1996).

    CAS  Google Scholar 

  31. D. Baillis and R. Coquard: Radiative and conductive thermal properties of foams, in Cellular and Porous Materials: Thermal Properties Simulation and Prediction, edited by A. Ochsner, G.E. Murch, and M.J.S. de Lemos (Wiley-VCH, Weinheim, 2008).

    Google Scholar 

  32. S. Grandjean: Réponse thermique à l’échelle locale dans les matériaux céramiques, effets des pores et des joints de grains. Ph.D. Thesis, University of Limoges, 2002.

    Google Scholar 

  33. P. Turkes, C. Pluntke, and R. Helbig: Thermal conductivity of SnO2 single crystals. J. Phys. C: Solid State Phys. 13, 4941–4951 (1980).

    Google Scholar 

  34. Z. Zivcova, E. Gregorova, W. Pabst, D.S. Smith, A. Michot, and C. Poulier: Thermal conductivity of porous alumina ceramics prepared using starch as a pore-forming agent. J. Eur. Ceram. Soc. 29, 347–353 (2009).

    CAS  Google Scholar 

  35. B. Nait-Ali, K. Haberko, H. Vesteghem, J. Absi, and D.S. Smith: Thermal conductivity of highly porous zirconia. J. Eur. Ceram. Soc. 26, 3567–3574 (2006).

    CAS  Google Scholar 

  36. J. Bourret, N. Tessier-Doyen, B. Nait-Ali, F. Pennec, A. Alzina, C.S. Peyratout, and D.S. Smith: Effect of pore volume fraction on the thermal conductivity and mechanical properties of kaolin based foams. J. Eur. Ceram. Soc. 33(9), 1487–1495 (2013).

    CAS  Google Scholar 

  37. F. Pennec, A. Alzina, N. Tessier-Doyen, B. Nait-Ali, and D.S. Smith: Probabilistic thermal conductivity analysis of dense stabilized zirconia ceramics. Comput. Mater. Sci. 67, 207–215 (2013).

    CAS  Google Scholar 

  38. F. Krauss Juillerat, U.T. Gonzenbach, A.R. Studart, L.J. Gauckler: Self-setting particle-stabilized foams with hierarchical pore structures. Mater. Lett. 64, 1468–1470 (2010).

    CAS  Google Scholar 

  39. U.T. Gonzenbach, A.R. Studart, E. Tervoort, and L.J. Gauckler: Ultrastable particle-stabilized foams. Angew. Chem. Int. Ed. 45, 3526–3530 (2006).

    CAS  Google Scholar 

  40. U.T. Gonzenbach, A.R. Studart, E. Tervoort, and L.J. Gauckler: Stabilization of foams with inorganic colloidal particles. Langmuir 22, 10983–10988 (2006).

    CAS  Google Scholar 

  41. F. Pennec, A. Alzina, N. Tessier-Doyen, B. Nait-Ali, N. Mati-Baouche, H. De Baynast, and D.S. Smith: A combined finite-discrete element method for calculating the effective thermal conductivity of bio-aggregates based materials. Int. J. Heat Mass Transfer 60, 274–283 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D.S., Alzina, A., Bourret, J. et al. Thermal conductivity of porous materials. Journal of Materials Research 28, 2260–2272 (2013). https://doi.org/10.1557/jmr.2013.179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.179

Navigation