Skip to main content

Advertisement

Log in

Graphene synthesis and application for solar cells

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To date graphene and graphene-derived materials have created an immense research interests due to its extraordinary physical, chemical, and physiochemical properties, which delineated graphene as an outstanding material for future electronics, optics, and energy-harvesting devices. Typically, graphene has high mobility and optical transparency along with excellent mechanical properties and chemical inertness. Single-layer graphene exhibits ultrahigh optical transmissivity (∼98%), which allows passing through wide range of light wave lengths, thus designated as an ever-reported material for an optically conducting window. Furthermore, graphene’s optical, electrical, and electrocatalytic properties can be tuned by applying different chemical functionalization protocols, which make it one of the most suitable candidates for advanced applications in optoelectronic and energy-harvesting devices. This review is intended to summarize the most important experimental results from the recent publications concerning the fascinating properties of graphene electrodes and their applications in various types of solar cells. Furthermore, the state of the art of different graphene synthesis processes and functionalization for the applications in solar cells are also discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. A.A. Balandin: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011).

    Article  CAS  Google Scholar 

  2. A.K. Geim and K.S. Novoselov: The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  3. S. Das and W. Choi: Graphene synthesis. In Graphene: Synthesis and Applications, Vol. 3, 1st ed.; W. Choi and J-W. Lee eds.; Taylor & Francis Group: Boca Raton, FL, 2011; pp. 27–63.

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  5. L.M. Viculis, J.J. Mack, and R.B. Kaner: A chemical route to carbon nanoscrolls. Science 299, 1361 (2003).

    Article  CAS  Google Scholar 

  6. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z.Y. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, and J.N. Coleman: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008).

    Article  CAS  Google Scholar 

  7. W.S. Hummers and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  8. S.S. Li, K.H. Tu, C.C. Lin, C.W. Chen, and M. Chhowalla: Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4, 3169–3174 (2010).

    Article  CAS  Google Scholar 

  9. P. Hasin, M.A. Alpuche-Aviles, and Y.Y. Wu: Electrocatalytic activity of graphene multi layers toward I/I3: Effect of preparation conditions and polyelectrolyte modification. J. Phys. Chem. C 114, 15857–15861 (2010).

    Article  CAS  Google Scholar 

  10. J.D. Roy-Mayhew, D.J. Bozym, C. Punckt, and I.A. Aksay: Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4, 6203–6211 (2010).

    Article  CAS  Google Scholar 

  11. G.L. Li, G. Liu, M. Li, D. Wan, K.G. Neoh, and E.T. Kang: Organo- and water-dispersible graphene oxide-polymer nanosheets for organic electronic memory and gold nanocomposites. J. Phys. Chem. C 114, 12742–12748 (2010).

    Article  CAS  Google Scholar 

  12. S.Q. Chen and Y. Wang: Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. J. Mater. Chem. 20, 9735–9739 (2010).

    Article  CAS  Google Scholar 

  13. J. Wintterlin and M.L. Bocquet: Graphene on metal surfaces. Surf. Sci. 603, 1841–1852 (2009).

    Article  CAS  Google Scholar 

  14. J.K. Wassei, M. Mecklenburg, J.A. Torres, J.D. Fowler, B.C. Regan, R.B. Kaner, and B.H. Weiller: Chemical vapor deposition of graphene on copper from methane, ethane and propane: Evidence for bilayer selectivity. Small 8, 1415–1422 (2012).

    Article  CAS  Google Scholar 

  15. C. Berger, Z.M. Song, T.B. Li, X.B. Li, A.Y. Ogbazghi, R. Feng, Z.T. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, and W.A. de Heer: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).

    Article  CAS  Google Scholar 

  16. M. Hupalo, E.H. Conrad, and M.C. Tringides: Growth mechanism for epitaxial graphene on vicinal 6H-SiC(0001) surfaces: A scanning tunneling microscopy study. Phys. Rev. B 80, 4 (2009).

    Article  CAS  Google Scholar 

  17. K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Rohrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, and T. Seyller: Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203–207 (2009).

    Article  CAS  Google Scholar 

  18. W.A. de Heer, C. Berger, X.S. Wu, P.N. First, E.H. Conrad, X.B. Li, T.B. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski, and G. Martinez: Epitaxial graphene. Solid State Commun. 143, 92–100 (2007).

    Article  CAS  Google Scholar 

  19. E. Kymakis, E. Stratakis, M.M. Stylianakis, E. Koudoumas, and C. Fotakis: Spin coated graphene films as the transparent electrode in organic photovoltaic devices. Thin Solid Films 520, 1238–1241 (2011).

    Article  CAS  Google Scholar 

  20. H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, and Y. Chen: Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–470 (2008).

    Article  CAS  Google Scholar 

  21. X. Wang, L.J. Zhi, and K. Mullen: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008).

    Article  CAS  Google Scholar 

  22. A. Chavez-Valdez, M.S.P. Shaffer, and A.R. Boccaccini: Applications of graphene electrophoretic deposition. A review. J. Phys. Chem. B 117, 1502–1515 (2013).

    Article  CAS  Google Scholar 

  23. G. Eda, Y-Y. Lin, S. Miller, C-W. Chen, W-F. Su, and M. Chhowalla: Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett. 92, 233305–233313 (2008).

    Article  CAS  Google Scholar 

  24. D. Li, M.B. Muller, S. Gilje, R.B. Kaner, and G.G. Wallace: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008).

    Article  CAS  Google Scholar 

  25. L.J. Cote, F. Kim, and J. Huang: Langmuir−blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131, 1043–1049 (2008).

    Article  CAS  Google Scholar 

  26. R. Ishikawa, M. Bando, H. Wada, Y. Kurokawa, A. Sandhu, and M. Konagai: Layer-by-layer assembled transparent conductive graphene films for silicon thin-film solar cells. Jpn. J. Appl. Phys. 51, 4 (2012).

    Article  CAS  Google Scholar 

  27. Y. Zhu, W. Cai, R.D. Piner, A. Velamakanni, and R.S. Ruoff: Transparent self-assembled films of reduced graphene oxide platelets. Appl. Phys. Lett. 95, 103104–103113 (2009).

    Article  CAS  Google Scholar 

  28. C. Chen, Q-H. Yang, Y. Yang, W. Lv, Y. Wen, P-X. Hou, M. Wang, and H-M. Cheng: Self-assembled free-standing graphite oxide membrane. Adv. Mater. 21, 3007–3011 (2009).

    Article  CAS  Google Scholar 

  29. J. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull, and J. Huang: Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 132, 8180–8186 (2010).

    Article  CAS  Google Scholar 

  30. X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  CAS  Google Scholar 

  31. S. Das, P. Sudhagar, V. Verma, D. Song, E. Ito, S.Y. Lee, Y.S. Kang, and W. Choi: Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells. Adv. Funct. Mater. 21, 3729–3736 (2011).

    Article  CAS  Google Scholar 

  32. X. Li, R. Zhang, W. Yu, K. Wang, J. Wei, D. Wu, A. Cao, Z. Li, Y. Cheng, Q. Zheng, R.S. Ruoff, and H. Zhu: Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep. 2, 870 (2012). doi: 10.1038/srep00870.

    Article  CAS  Google Scholar 

  33. V.P. Verma, S. Das, I. Lahiri, and W. Choi: Large-area graphene on polymer film for flexible and transparent anode in field emission device. Appl. Phys. Lett. 96, 203108 (2010). doi: 10.1063/1.3431630.

    Article  CAS  Google Scholar 

  34. D.H. Wang, J.K. Kim, J.H. Seo, I. Park, B.H. Hong, J.H. Park, and A.J. Heeger: Transferable graphene oxide by stamping nanotechnology: Electron-transport layer for efficient bulk-heterojunction solar cells. Angew. Chem. Int. Ed. 52, 2874–2880 (2013).

    Article  CAS  Google Scholar 

  35. S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, and S. Iijima: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).

    Article  CAS  Google Scholar 

  36. J-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M.S. Fuhrer: Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008).

    Article  CAS  Google Scholar 

  37. A. Akturk and N. Goldsman: Electron transport and full-band electron-phonon interactions in graphene. J. Appl. Phys. 103, 053702–053708 (2008).

    Article  CAS  Google Scholar 

  38. X.S. Li, Y.W. Zhu, W.W. Cai, M. Borysiak, B.Y. Han, D. Chen, R.D. Piner, L. Colombo, and R.S. Ruoff: Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359–4363 (2009).

    Article  CAS  Google Scholar 

  39. I. Lahiri, V.P. Verma, and W. Choi: An all-graphene based transparent and flexible field emission device. Carbon 49, 1614–1619 (2011).

    Article  CAS  Google Scholar 

  40. X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu: Graphene-on-silicon schottky junction solar cells. Adv. Mater. 22, 2743–2748 (2010).

    Article  CAS  Google Scholar 

  41. Y. Ye, Y. Dai, L. Dai, Z. Shi, N. Liu, F. Wang, L. Fu, R. Peng, X. Wen, Z. Chen, Z. Liu, and G. Qin: High-performance single CdS nanowire (nanobelt) schottky junction solar cells with Au/graphene schottky electrodes. ACS Appl. Mater. Interfaces 2, 3406–3410 (2010).

    Article  CAS  Google Scholar 

  42. X. Miao, S. Tongay, M.K. Petterson, K. Berke, A.G. Rinzler, B.R. Appleton, and A.F. Hebard: High efficiency graphene solar cells by chemical doping. Nano Lett. 12, 2745–2750 (2012).

    Article  CAS  Google Scholar 

  43. S. Tongay, K. Berke, M. Lemaitre, Z. Nasrollahi, D.B. Tanner, A.F. Hebard, and B.R. Appleton: Stable hole doping of graphene for low electrical resistance and high optical transparency. Nanotechnology 22, 425701 (2011).

    Article  CAS  Google Scholar 

  44. I. Mora-Seró and J. Bisquert: Breakthroughs in the development of semiconductor-sensitized solar cells. J. Phys. Chem. Lett. 1, 3046–3052 (2010).

    Article  CAS  Google Scholar 

  45. J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T-Q. Nguyen, M. Dante, and A.J. Heeger: Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007).

    Article  CAS  Google Scholar 

  46. A. Yella, H-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W-G. Diau, C-Y. Yeh, S.M. Zakeeruddin, and M. Grätzel: Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011).

    Article  CAS  Google Scholar 

  47. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson: Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010).

    Article  CAS  Google Scholar 

  48. D. Chen, H. Zhang, Y. Liu, and J. Li: Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy Environ. Sci. 6, 1362–1387 (2013).

    Article  CAS  Google Scholar 

  49. H-X. Wang, Q. Wang, K-G. Zhou, and H-L. Zhang: Graphene in light: Design, synthesis and applications of photo-active graphene and graphene-like materials. Small 9, 1266–1283 (2013).

    Article  CAS  Google Scholar 

  50. W. Tu, Y. Zhou, and Z. Zou: Versatile graphene-promoting photocatalytic performance of semiconductors: Basic principles, synthesis, solar energy conversion, and environmental applications. Adv. Funct. Mater. (2013). doi: 10.1002/adfm.201203547.

  51. J. Zhang, F. Zhao, Z. Zhang, N. Chen, and L. Qu: Dimension-tailored functional graphene structures for energy conversion and storage. Nanoscale 5, 3112–3126 (2013).

    Article  CAS  Google Scholar 

  52. H.N. Kim, H. Yoo, and J.H. Moon: Graphene-embedded 3D TiO2 inverse opal electrodes for highly efficient dye-sensitized solar cells: Morphological characteristics and photocurrent enhancement. Nanoscale 5, 4200–4204 (2013).

    Article  CAS  Google Scholar 

  53. F. Gong, X. Xu, G. Zhou, and Z.S. Wang: Enhanced charge transportation in a polypyrrole counter electrode via incorporation of reduced graphene oxide sheets for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 15, 546–552 (2013).

    Article  CAS  Google Scholar 

  54. A. Chavez-Valdez, M.S. Shaffer, and A.R. Boccaccini: Applications of graphene electrophoretic deposition. A review. J. Phys. Chem. B 117, 1502–1515 (2013).

    Article  CAS  Google Scholar 

  55. S. Morales-Torres, L.M. Pastrana-Martinez, J.L. Figueiredo, J.L. Faria, and A.M. Silva: Design of graphene-based TiO2 photocatalysts: A review. Environ. Sci. Pollut. Res. Int. 19, 3676–3687 (2012).

    Article  CAS  Google Scholar 

  56. J.S. Lee, H.J. Ahn, J.C. Yoon, and J.H. Jang: Three-dimensional nano-foam of few-layer graphene grown by CVD for DSSC. Phys. Chem. Chem. Phys. 14, 7938–7943 (2012).

    Article  CAS  Google Scholar 

  57. Z. Peining, A.S. Nair, P. Shengjie, Y. Shengyuan, and S. Ramakrishna: Facile fabrication of TiO2-graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning. ACS Appl. Mater. Interfaces 4, 581–585 (2012).

    Article  CAS  Google Scholar 

  58. K.S. Lee, Y. Lee, J.Y. Lee, J.H. Ahn, and J.H. Park: Flexible and platinum-free dye-sensitized solar cells with conducting-polymer-coated graphene counter electrodes. ChemSusChem 5, 379–382 (2012).

    Article  CAS  Google Scholar 

  59. L. Kavan, J.H. Yum, and M. Gratzel: Graphene nanoplatelets outperforming platinum as the electrocatalyst in co-bipyridine-mediated dye-sensitized solar cells. Nano Lett. 11, 5501–5506 (2011).

    Article  CAS  Google Scholar 

  60. Z. He, G. Guai, J. Liu, C. Guo, J.S. Loo, C.M. Li, and T.T. Tan: Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells. Nanoscale 3, 4613–4616 (2011).

    Article  CAS  Google Scholar 

  61. L. Kavan, J.H. Yum, M.K. Nazeeruddin, and M. Gratzel: Graphene nanoplatelet cathode for Co(III)/(II) mediated dye-sensitized solar cells. ACS Nano 5, 9171–9178 (2011).

    Article  CAS  Google Scholar 

  62. J. Song, Z. Yin, Z. Yang, P. Amaladass, S. Wu, J. Ye, Y. Zhao, W.Q. Deng, H. Zhang, and X.W. Liu: Enhancement of photogenerated electron transport in dye-sensitized solar cells with introduction of a reduced graphene oxide-TiO2 junction. Chem. Eur. J. 17, 10832–10837 (2011).

    Article  CAS  Google Scholar 

  63. R. Bajpai, S. Roy, P. Kumar, P. Bajpai, N. Kulshrestha, J. Rafiee, N. Koratkar, and D.S. Misra: Graphene supported platinum nanoparticle counter-electrode for enhanced performance of dye-sensitized solar cells. ACS Appl. Mater. Interfaces 3, 3884–3889 (2011).

    Article  CAS  Google Scholar 

  64. L. Kavan, J.H. Yum, and M. Gratzel: Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano 5, 165–172 (2011).

    Article  CAS  Google Scholar 

  65. J.D. Roy-Mayhew, D.J. Bozym, C. Punckt, and I.A. Aksay: Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4, 6203–6211 (2010).

    Article  CAS  Google Scholar 

  66. D.M. Guldi and V. Sgobba: Carbon nanostructures for solar energy conversion schemes. Chem. Commun. 47, 606–610 (2011).

    Article  CAS  Google Scholar 

  67. D. Wei: Dye sensitized solar cells. Int. J. Mol. Sci. 11, 1103–1113 (2010).

    Article  CAS  Google Scholar 

  68. Y.B. Tang, C.S. Lee, J. Xu, Z.T. Liu, Z.H. Chen, Z. He, Y.L. Cao, G. Yuan, H. Song, L. Chen, L. Luo, H.M. Cheng, W.J. Zhang, I. Bello, and S.T. Lee: Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano 4, 3482–3488 (2010).

    Article  CAS  Google Scholar 

  69. N. Yang, J. Zhai, D. Wang, Y. Chen, and L. Jiang: Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4, 887–894 (2010).

    Article  CAS  Google Scholar 

  70. N.J. Bell, Y.H. Ng, A. Du, H. Coster, S.C. Smith, and R. Amal: Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J. Phys. Chem. C 115, 6004–6009 (2011).

    Article  CAS  Google Scholar 

  71. T. Chen, W. Hu, J. Song, G.H. Guai, and C.M. Li: Interface functionalization of photoelectrodes with graphene for high performance dye-sensitized solar cells. Adv. Funct. Mater. 22, 5245–5250 (2012).

    Article  CAS  Google Scholar 

  72. B. Tang and G. Hu: Two kinds of graphene-based composites for photoanode applying in dye-sensitized solar cell. J. Power Sources 220, 95–102 (2012).

    Article  CAS  Google Scholar 

  73. C.Y. Neo and J. Ouyang: Graphene oxide as auxiliary binder for TiO2 nanoparticle coating to more effectively fabricate dye-sensitized solar cells. J. Power Sources 222, 161–168 (2013).

    Article  CAS  Google Scholar 

  74. S. Sun, L. Gao, and Y. Liu: Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation. Appl. Phys. Lett. 96, 083113 (2010).

    Article  CAS  Google Scholar 

  75. H. Wang, S.L. Leonard, and Y.H. Hu: Promoting effect of graphene on dye-sensitized solar cells. Ind. Eng. Chem. Res. 51, 10613–10620 (2012).

    Article  CAS  Google Scholar 

  76. B. Tang, G. Hu, H. Gao, and Z. Shi: Three-dimensional graphene network assisted high performance dye sensitized solar cells. J. Power Sources 234, 60–68 (2013).

    Article  CAS  Google Scholar 

  77. X-Y. Zhang, H-P. Li, X-L. Cui, and Y. Lin: Graphene/TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J. Mater. Chem. 20, 2801–2806 (2010).

    Article  CAS  Google Scholar 

  78. X. Xin, X. Zhou, J. Wu, X. Yao, and Z. Liu: Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries. ACS Nano 6, 11035–11043 (2012).

    Article  CAS  Google Scholar 

  79. J.N. Ding, C.T. Yu, N.Y. Yuan, Y.B. Liu, and Y Fan: High-quality GS/TiO2 composite for the photoanode of the dye-sensitized solar cells. In Proceedings of the International Conference on Materials for Renewable Energy & Environment (ICMREE), May 20–22, 2011; pp. 90–94.

  80. A. Gs, S. Nair, S.V. Nair, and S. Vadukumpully: One-pot hydrothermal synthesis of TiO2/graphene nanocomposites for enhanced visible photocatalysis and photovoltaics. RSC Adv. 3(31), 12933–12938 (2013). doi: 10.1039/c3ra41388h.

    Article  CAS  Google Scholar 

  81. J. Chang, J. Yang, P. Ma, D. Wu, L. Tian, Z. Gao, K. Jiang, and L. Yang: Hierarchical titania mesoporous sphere/graphene composite, synthesis and application as photoanode in dye sensitized solar cells. J. Colloid Interface Sci. 394, 231–236 (2013).

    Article  CAS  Google Scholar 

  82. J. Fan, S. Liu, and J. Yu: Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films. J. Mater. Chem. 22, 17027–17036 (2012).

    Article  CAS  Google Scholar 

  83. L. Sun, Z. Zhao, Y. Zhou, and L. Liu: Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity. Nanoscale 4, 613–620 (2012).

    Article  CAS  Google Scholar 

  84. X. Liu, L. Pan, T. Lv, G. Zhu, T. Lu, Z. Sun, and C. Sun: Microwave-assisted synthesis of TiO2-reduced graphene oxide composites for the photocatalytic reduction of Cr(vi). RSC Adv. 1, 1245–1249 (2011).

    Article  CAS  Google Scholar 

  85. T.H. Tsai, S.C. Chiou, and S.M. Chen: Enhancement of dye-sensitized solar cells by using graphene-TiO2 composites as photoelectrochemical working electrode. Int. J. Electrochem. Sci. 6, 3333–3343 (2011).

    CAS  Google Scholar 

  86. A. Anish Madhavan, S. Kalluri, D.K. Chacko, T.A. Arun, S. Nagarajan, K.R.V. Subramanian, A. Sreekumaran Nair, S.V. Nair, and A. Balakrishnan: Electrical and optical properties of electrospun TiO2-graphene composite nanofibers and its application as DSSC photo-anodes. RSC Adv. 2, 13032–13037 (2012).

    Article  CAS  Google Scholar 

  87. X. Zhang, P. Suresh Kumar, V. Aravindan, H.H. Liu, J. Sundaramurthy, S.G. Mhaisalkar, H.M. Duong, S. Ramakrishna, and S. Madhavi: Electrospun TiO2–graphene composite nanofibers as a highly durable insertion anode for lithium ion batteries. J. Phys. Chem. C 116, 14780–14788 (2012).

    Article  CAS  Google Scholar 

  88. C.H. Kim, B-H. Kim, and K.S. Yang: TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis. Carbon 50, 2472–2481 (2012).

    Article  CAS  Google Scholar 

  89. J. Song, Z. Yin, Z. Yang, P. Amaladass, S. Wu, J. Ye, Y. Zhao, W-Q. Deng, H. Zhang, and X-W. Liu: Enhancement of photogenerated electron transport in dye-sensitized solar cells with introduction of a reduced graphene oxide–TiO2 junction. Chem. Eur. J. 17, 10832–10837 (2011).

    Article  CAS  Google Scholar 

  90. J. Durantini, P.P. Boix, M. Gervaldo, G.M. Morales, L. Otero, J. Bisquert, and E.M. Barea: Photocurrent enhancement in dye-sensitized photovoltaic devices with titania–graphene composite electrodes. J. Electroanal. Chem. 683, 43–46 (2012).

    Article  CAS  Google Scholar 

  91. H. Han, P. Sudhagar, T. Song, Y. Jeon, I. Mora-Sero, F. Fabregat-Santiago, J. Bisquert, Y.S. Kang, and U. Paik: Three dimensional-TiO2 nanotube array photoanode architectures assembled on a thin hollow nanofibrous backbone and their performance in quantum dot-sensitized solar cells. Chem. Commun. 49, 2810–2812 (2013).

    Article  CAS  Google Scholar 

  92. M. Gratzel: Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  CAS  Google Scholar 

  93. M. Grätzel: Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol., A 164, 3–14 (2004).

    Article  CAS  Google Scholar 

  94. J.E. Trancik, S.C. Barton, and J. Hone: Transparent and catalytic carbon nanotube films. Nano Lett. 8, 982–987 (2008).

    Article  CAS  Google Scholar 

  95. G.R. Li, F. Wang, Q.W. Jiang, X.P. Gao, and P.W. Shen: Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. Angew. Chem. Int. Ed. 49, 3653–3656 (2010).

    Article  CAS  Google Scholar 

  96. M.K. Wang, A.M. Anghel, B. Marsan, N.L.C. Ha, N. Pootrakulchote, S.M. Zakeeruddin, and M. Gratzel: CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. J. Am. Chem. Soc. 131, 15976 (2009).

    Article  CAS  Google Scholar 

  97. T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Pechy, and M. Graetzel: Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J. Electrochem. Soc. 153, A2255–A2261 (2006).

    Article  CAS  Google Scholar 

  98. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2008).

    Article  CAS  Google Scholar 

  99. M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho, and Y.J. Chabal: Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nat. Mater. 9, 840–845 (2010).

    Article  CAS  Google Scholar 

  100. L. Kavan, J.H. Yum, and M. Gratzel: Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano 5, 165–172 (2010).

    Article  CAS  Google Scholar 

  101. S. Das, P. Sudhagar, S. Nagarajan, E. Ito, S.Y. Lee, Y.S. Kang, and W. Choi: Synthesis of graphene-CoS electro-catalytic electrodes for dye sensitized solar cells. Carbon 50, 4815–4821 (2012).

    Article  CAS  Google Scholar 

  102. S. Das, P. Sudhagar, E. Ito, D-Y. Lee, S. Nagarajan, S.Y. Lee, Y.S. Kang, and W. Choi: Effect of HNO3 functionalization on large scale graphene for enhanced tri-iodide reduction in dye-sensitized solar cells. J. Mater. Chem. 22, 20490–20497 (2012).

    Article  CAS  Google Scholar 

  103. C. Xu, J. Li, X. Wang, J. Wang, L. Wan, Y. Li, M. Zhang, X. Shang, and Y. Yang: Synthesis of hemin functionalized graphene and its application as a counter electrode in dye-sensitized solar cells. Mater. Chem. Phys. 132, 858–864 (2012).

    Article  CAS  Google Scholar 

  104. Y. Xue, J. Liu, H. Chen, R. Wang, D. Li, J. Qu, and L. Dai: Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells. Angew. Chem. Int. Ed. 51, 12124–12127 (2012).

    Article  CAS  Google Scholar 

  105. W. Hong, Y. Xu, G. Lu, C. Li, and G. Shi: Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 10, 1555–1558 (2008).

    Article  CAS  Google Scholar 

  106. K.S. Lee, Y. Lee, J.Y. Lee, J-H. Ahn, and J.H. Park: Flexible and platinum-free dye-sensitized solar cells with conducting-polymer-coated graphene counter electrodes. ChemSusChem 5, 379–382 (2012).

    Article  CAS  Google Scholar 

  107. F. Gong, H. Wang, and Z-S. Wang: Self-assembled monolayer of graphene/Pt as counter electrode for efficient dye-sensitized solar cell. Phys. Chem. Chem. Phys. 13(39), 17676–17682 (2011). doi: 10.1039/c1cp22542a.

    Article  CAS  Google Scholar 

  108. P-J. Li, K. Chen, Y-F. Chen, Z-G. Wang, X. Hao, J-B. Liu, J-R. He, and W-L. Zhang: Low platinum loading PtNPs/graphene composite catalyst with high electrocatalytic activity for dye-sensitized solar cells. Chin. Phys. B 21, 118101 (2012).

    Article  CAS  Google Scholar 

  109. M. Al-Mamun, J-Y. Kim, Y-E. Sung, J-J. Lee, and S-R. Kim: Pt and TCO free hybrid bilayer silver nanowire–graphene counter electrode for dye-sensitized solar cells. Chem. Phys. Lett. 561–562, 115–119 (2013).

    Article  CAS  Google Scholar 

  110. R. Bajpai, S. Roy, N. Koratkar, and D.S. Misra: NiO nanoparticles deposited on graphene platelets as a cost-effective counter electrode in a dye sensitized solar cell. Carbon 56, 56–63 (2013).

    Article  CAS  Google Scholar 

  111. Y.Y. Dou, G.R. Li, J. Song, and X.P. Gao: Nickel phosphide-embedded graphene as counter electrode for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 14, 1339–1342 (2012).

    Article  CAS  Google Scholar 

  112. Z. Wen, S. Cui, H. Pu, S. Mao, K. Yu, X. Feng, and J. Chen: Metal nitride/graphene nanohybrids: General synthesis and multifunctional titanium nitride/graphene electrocatalyst. Adv. Mater. 23, 5445–5450 (2011).

    Article  CAS  Google Scholar 

  113. H. Choi, H. Kim, S. Hwang, M. Kang, D-W. Jung, and M. Jeon: Electrochemical electrodes of graphene-based carbon nanotubes grown by chemical vapor deposition. Scr. Mater. 64, 601–604 (2011).

    Article  CAS  Google Scholar 

  114. J. Velten, A.J. Mozer, D. Li, D. Officer, G. Wallace, R. Baughman, and A. Zakhidov: Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells. Nanotechnology 23, 085201 (2012).

    Article  CAS  Google Scholar 

  115. G. Zhu, L. Pan, T. Lu, T. Xu, and Z. Sun: Electrophoretic deposition of reduced graphene-carbon nanotubes composite films as counter electrodes of dye-sensitized solar cells. J. Mater. Chem. 21, 14869–14875 (2011).

    Article  CAS  Google Scholar 

  116. L. Wan, S. Wang, X. Wang, B. Dong, Z. Xu, X. Zhang, B. Yang, S. Peng, J. Wang, and C. Xu: Room-temperature fabrication of graphene films on variable substrates and its use as counter electrodes for dye-sensitized solar cells. Solid State Sci. 13, 468–475 (2011).

    Article  CAS  Google Scholar 

  117. A. Kaniyoor and S. Ramaprabhu: Thermally exfoliated graphene based counter electrode for low cost dye sensitized solar cells. J. Appl. Phys. 109, 124308–124316 (2011).

    Article  CAS  Google Scholar 

  118. D.W. Zhang, X.D. Li, H.B. Li, S. Chen, Z. Sun, X.J. Yin, and S.M. Huang: Graphene-based counter electrode for dye-sensitized solar cells. Carbon 49, 5382–5388 (2011).

    Article  CAS  Google Scholar 

  119. C-T. Hsieh, B-H. Yang, and J-Y. Lin: One- and two-dimensional carbon nanomaterials as counter electrodes for dye-sensitized solar cells. Carbon 49, 3092–3097 (2011).

    Article  CAS  Google Scholar 

  120. H. Choi, H. Kim, S. Hwang, Y. Han, and M. Jeon: Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition. J. Mater. Chem. 21, 7548–7551 (2011).

    Article  CAS  Google Scholar 

  121. R. Cruz, D.A. Pacheco Tanaka, and A. Mendes: Reduced graphene oxide films as transparent counter-electrodes for dye-sensitized solar cells. Solar Energy 86, 716–724 2012.

    Article  CAS  Google Scholar 

  122. M. Stefik, J-H. Yum, Y. Hu, and M. Gratzel: Carbon-graphene nanocomposite cathodes for improved Co(ii/iii) mediated dye-sensitized solar cells. J. Mater. Chem. A 1, 4982–4987 (2013).

    Article  CAS  Google Scholar 

  123. H. Choi, H. Kim, S. Hwang, W. Choi, and M. Jeon: Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode. Sol. Energy Mater. Sol. Cells 95, 323–325 (2011).

    Article  CAS  Google Scholar 

  124. X.B. Xu, D.K. Huang, K. Cao, M.K. Wang, S.M. Zakeeruddin, and M. Gratzel: Electrochemically reduced graphene oxide multilayer films as efficient counter electrode for dye-sensitized solar cells. Sci. Rep. 3, 7 (2013).

    Google Scholar 

  125. W. Sun, T. Peng, Y. Liu, S. Xu, J. Yuan, S. Guo, and X-Z. Zhao: Hierarchically porous hybrids of polyaniline nanoparticles anchored on reduced graphene oxide sheets as counter electrodes for dye-sensitized solar cells. J. Mater. Chem. A 1, 2762–2768 (2013).

    Article  CAS  Google Scholar 

  126. P.V. Kamat: Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008).

    Article  CAS  Google Scholar 

  127. A.M. Smith and S. Nie: Semiconductor nanocrystals: Structure, properties, and band gap engineering. Acc. Chem. Res. 43, 190–200 (2009).

    Article  CAS  Google Scholar 

  128. W.A. Tisdale, K.J. Williams, B.A. Timp, D.J. Norris, E.S. Aydil, and X-Y. Zhu: Hot-electron transfer from semiconductor nanocrystals. Science 328, 1543–1547 (2010).

    Article  CAS  Google Scholar 

  129. O.E. Semonin, J.M. Luther, S. Choi, H-Y. Chen, J. Gao, A.J. Nozik, and M.C. Beard: Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011).

    Article  CAS  Google Scholar 

  130. B. Farrow and P.V. Kamat: CdSe quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups. J. Am. Chem. Soc. 131, 11124–11131 (2009).

    Article  CAS  Google Scholar 

  131. H. Lee, M. Wang, P. Chen, D.R. Gamelin, S.M. Zakeeruddin, M. Gratzel, and M.K. Nazeeruddin: Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Nano Lett. 9, 4221–4227 (2009).

    Article  CAS  Google Scholar 

  132. H.J. Lee, P. Chen, S.J. Moon, F. Sauvage, K. Sivula, T. Bessho, D.R. Gamelin, P. Comte, S.M. Zakeeruddin, S.I. Seok, M. Gratzel, and M.K. Nazeeruddin: Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator. Langmuir 25, 7602–7608 (2009).

    Article  CAS  Google Scholar 

  133. S. Ruhle, M. Shalom, and A. Zaban: Quantum-dot-sensitized solar cells. ChemPhysChem 11, 2290–2304 (2010).

    Article  CAS  Google Scholar 

  134. M. Samadpour, S. Gimenez, A.I. Zad, N. Taghavinia, and I. Mora-Sero: Easily manufactured TiO2 hollow fibers for quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 14, 522–528 (2012).

    Article  CAS  Google Scholar 

  135. N. Zhou, Y. Yang, X. Huang, H. Wu, Y. Luo, D. Li, and Q. Meng: Panchromatic quantum-dot-sensitized solar cells based on a parallel tandem structure. ChemSusChem 6, 687–692 (2013).

    Article  CAS  Google Scholar 

  136. G. Hodes: Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells. J. Phys. Chem. C 112, 17778–17787 (2008).

    Article  CAS  Google Scholar 

  137. C.X. Guo, H.B. Yang, Z.M. Sheng, Z.S. Lu, Q.L. Song, and C.M. Li: Layered graphene/quantum dots for photovoltaic devices. Angew. Chem. Int. Ed. 49, 3014–3017 (2010).

    Article  CAS  Google Scholar 

  138. S. Sun, L. Gao, Y. Liu, and J. Sun: Assembly of CdSe nanoparticles on graphene for low-temperature fabrication of quantum dot sensitized solar cell. Appl. Phys. Lett. 98, 093112 (2011). doi: 10.1063/1.3558732.

    Article  CAS  Google Scholar 

  139. I. Mora-Seró, S. Giménez, F. Fabregat-Santiago, R. Gómez, Q. Shen, T. Toyoda, and J. Bisquert: Recombination in quantum dot sensitized solar cells. Acc. Chem. Res. 42, 1848–1857 (2009).

    Article  CAS  Google Scholar 

  140. J.W. Lee, D.Y. Son, T.K. Ahn, H.W. Shin, I.Y. Kim, S.J. Hwang, M.J. Ko, S. Sul, H. Han, and N.G. Park: Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent. Sci. Rep. 3, 1050 (2013). doi: 10.1038/srep01050.

    Article  CAS  Google Scholar 

  141. P. Sudhagar, K. Asokan, E. Ito, and Y.S. Kang: N-ion-implanted TiO2 photoanodes in quantum dot-sensitized solar cells. Nanoscale 4, 2416–2422 (2012).

    Article  CAS  Google Scholar 

  142. Z. Tachan, I. Hod, M. Shalom, L. Grinis, and A. Zaban: The importance of the TiO2/quantum dots interface in the recombination processes of quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 15, 3841–3845 (2013).

    Article  CAS  Google Scholar 

  143. M.S. De La Fuente, R.S. Sánchez, V. González-Pedro, P.P. Boix, S.G. Mhaisalkar, M.E. Rincón, J. Bisquert, and I. Mora-Seró: Effect of organic and inorganic passivation in quantum-dot-sensitized solar cells. J. Phys. Chem. Lett. 4, 1519–1525 (2013).

    Article  CAS  Google Scholar 

  144. P. Sudhagar, E. Ramasamy, W-H. Cho, J. Lee, and Y.S. Kang: Robust mesocellular carbon foam counter electrode for quantum-dot sensitized solar cells. Electrochem. Commun. 13, 34–37 (2011).

    Article  CAS  Google Scholar 

  145. A. Braga, S. Giménez, I. Concina, A. Vomiero, and I. Mora-Seró: Panchromatic sensitized solar cells based on metal sulfide quantum dots grown directly on nanostructured TiO2 electrodes. J. Phys. Chem. Lett. 2, 454–460 (2011).

    Article  CAS  Google Scholar 

  146. J. Zhao, J. Wu, F. Yu, X. Zhang, Z. Lan, and J. Lin: Improving the photovoltaic performance of cadmium sulfide quantum dots-sensitized solar cell by graphene/titania photoanode. Electrochim. Acta 96, 110–116 (2013).

    Article  CAS  Google Scholar 

  147. I.V. Lightcap and P.V. Kamat: Fortification of CdSe quantum dots with graphene oxide. Excited state interactions and light energy conversion. J. Am. Chem. Soc. 134, 7109–7116 (2012).

    Article  CAS  Google Scholar 

  148. L.S. Li and X. Yan: Colloidal graphene quantum dots. J. Phys. Chem. Lett. 1, 2572–2576 (2010).

    Article  CAS  Google Scholar 

  149. Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu: An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 23, 776–780 (2011).

    Article  CAS  Google Scholar 

  150. I.P. Hamilton, B. Li, X. Yan, and L.S. Li: Alignment of colloidal graphene quantum dots on polar surfaces. Nano Lett. 11, 1524–1529 (2011).

    Article  CAS  Google Scholar 

  151. K.J. Williams, C.A. Nelson, X. Yan, L-S. Li, and X. Zhu: Hot electron injection from graphene quantum dots to TiO2. ACS Nano 7, 1388–1394 (2013).

    Article  CAS  Google Scholar 

  152. X. Yan, X. Cui, and B. Li, L-S. Li: Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 10, 1869–1873 (2010).

    Article  CAS  Google Scholar 

  153. F.C. Krebs: Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93, 394–412 (2009).

    Article  CAS  Google Scholar 

  154. Y-W. Su, S-C. Lan, and K-H. Wei: Organic photovoltaics. Mater. Today 15, 554–562 (2012).

    Article  CAS  Google Scholar 

  155. V. Yong and J.M. Tour: Theoretical efficiency of nanostructured graphene-based photovoltaics. Small 6, 313–318 (2010).

    Article  CAS  Google Scholar 

  156. L. Gomez De Arco, Y. Zhang, C.W. Schlenker, K. Ryu, M.E. Thompson, and C. Zhou: Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4, 2865–2873 (2010).

    Article  CAS  Google Scholar 

  157. V. Gupta, N. Chaudhary, R. Srivastava, G.D. Sharma, R. Bhardwaj, and S. Chand: Luminscent graphene quantum dots for organic photovoltaic devices. J. Am. Chem. Soc. 133, 9960–9963 (2011).

    Article  CAS  Google Scholar 

  158. G. Jo, S.I. Na, S.H. Oh, S. Lee, T.S. Kim, G. Wang, M. Choe, W. Park, J. Yoon, D.Y. Kim, Y.H. Kahng, and T. Lee: Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure. Appl. Phys. Lett. 97, 213301 (2010). doi: 10.1063/1.3514551.

    Article  CAS  Google Scholar 

  159. Y.Y. Lee, K.H. Tu, C.C. Yu, S.S. Li, J.Y. Hwang, C.C. Lin, K.H. Chen, L.C. Chen, H.L. Chen, and C.W. Chen: Top laminated graphene electrode in a semitransparent polymer solar cell by simultaneous thermal annealing/releasing method. ACS Nano 5, 6564–6570 (2011).

    Article  CAS  Google Scholar 

  160. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao: Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 6, 591–595 (2012).

    Article  CAS  Google Scholar 

  161. L. Dou, J. You, J. Yang, C.C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang: Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat. Photonics 6, 180–185 (2012).

    Article  CAS  Google Scholar 

  162. C.E. Small, S. Chen, J. Subbiah, C.M. Amb, S.W. Tsang, T.H. Lai, J.R. Reynolds, and F. So: High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells. Nat. Photonics 6, 115–120 (2012).

    Article  CAS  Google Scholar 

  163. H. Park, P.R. Brown, V. Bulović, and J. Kong: Graphene as transparent conducting electrodes in organic photovoltaics: Studies in graphene morphology, hole transporting layers, and counter electrodes. Nano Lett. 12, 133–140 (2011).

    Article  CAS  Google Scholar 

  164. P. Lin, W.C.H. Choy, D. Zhang, F. Xie, J. Xin, and C.W. Leung: Semitransparent organic solar cells with hybrid monolayer graphene/metal grid as top electrodes. Appl. Phys. Lett. 102, 113303 (2013). doi: 10.1063/1.4798254.

    Article  CAS  Google Scholar 

  165. G. Eda, G. Fanchini, and M. Chhowalla: Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270–274 (2008).

    Article  CAS  Google Scholar 

  166. X. Wan, G. Long, L. Huang, and Y. Chen: Graphene: A promising material for organic photovoltaic cells. Adv. Mater. 23, 5342–5358 (2011).

    Article  CAS  Google Scholar 

  167. S. Abdulalmohsin and J.B. Cui: Graphene-enriched P3HT and porphyrin-modified ZnO nanowire arrays for hybrid solar cell applications. J. Phys. Chem. C 116, 9433–9438 (2012).

    Article  CAS  Google Scholar 

  168. Y.Y. Choi, S.J. Kang, H.K. Kim, W.M. Choi, and S.I. Na: Multilayer graphene films as transparent electrodes for organic photovoltaic devices. Sol. Energy Mater. Sol. Cells 96, 281–285 (2012).

    Article  CAS  Google Scholar 

  169. C.L. Hsu, C.T. Lin, J.H. Huang, C.W. Chu, K.H. Wei, and L.J. Li: Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells. ACS Nano 6, 5031–5039 (2012).

    Article  CAS  Google Scholar 

  170. S. Lee, J.S. Yeo, Y. Ji, C. Cho, D.Y. Kim, S.I. Na, B.H. Lee, and T. Lee: Flexible organic solar cells composed of P3HT: PCBM using chemically doped graphene electrodes. Nanotechnology 23, 344013 (2012). doi: 10.1088/0957-4484/23/34/344013.

    Article  CAS  Google Scholar 

  171. Z. Liu, J. Li, Z.H. Sun, G. Tai, S.P. Lau, and F. Yan: The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells. ACS Nano 6, 810–818 (2012).

    Article  CAS  Google Scholar 

  172. H. Park, R.M. Howden, M.C. Barr, V. Bulović, K. Gleason, and J. Kong: Organic solar cells with graphene electrodes and vapor printed poly(3,4-ethylenedioxythiophene) as the hole transporting layers. ACS Nano 6, 6370–6377 (2012).

    Article  CAS  Google Scholar 

  173. S. Zhong, J.Q. Zhong, H.Y. Mao, R. Wang, Y. Wang, D.C. Qi, K.P. Loh, A.T.S. Wee, Z.K. Chen, and W. Chen: CVD graphene as interfacial layer to engineer the organic donor-acceptor heterojunction interface properties. ACS Appl. Mater. Interfaces 4, 3134–3140 (2012).

    Article  CAS  Google Scholar 

  174. H.P. Kim, A.R.B. Mohd Yusoff, and J. Jang: Organic solar cells using a reduced graphene oxide anode buffer layer. Sol. Energy Mater. Sol. Cells 110, 87–93 (2013).

    Article  CAS  Google Scholar 

  175. H. Park, S. Chang, M. Smith, S. Gradečak, and J. Kong: Interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics. Sci. Rep. 3, 1581 (2013). doi: 10.1038/srep01581.

    Article  CAS  Google Scholar 

  176. A. Iwan and A. Chuchmała: Perspectives of applied graphene: Polymer solar cells. Prog. Polym. Sci. 37, 1805–1828 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the support of the WCU (World Class University) program through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science and Technology (Grant No. R31-2008-000-10092) and Engineering Research Center Program (Grant No. 2012-0000591).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonbong Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S., Sudhagar, P., Kang, Y.S. et al. Graphene synthesis and application for solar cells. Journal of Materials Research 29, 299–319 (2014). https://doi.org/10.1557/jmr.2013.297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.297

Navigation