Skip to main content
Log in

Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies

  • Metal
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study presents results of selective laser melting (SLM), powder metallurgy (PM), and casting technologies applied for producing Ti–TiB composites from Ti–TiB2 powder. Diffraction patterns and microstructural investigations reveal that chemical reaction occurred between Ti and TiB2 during all the three processes, leading to the formation of Ti–TiB composites. The ultimate compressive strength of SLM-processed and cast samples are 1421 and 1434 MPa, respectively, whereas the ultimate compressive strengths of PM-processed 25%, 29%, and 36% porous samples are 510, 414, and 310 MPa, respectively. The Young’s moduli of porous composite samples are 70, 45, and 23 GPa for 25%, 29%, and 36% porosity levels, respectively, and are lower than those of SLM-processed (145 GPa) and cast (142 GPa) samples. Fracture analysis of the SLM-processed and cast samples shows shear fracture and microcracks across the samples, whereas failure of porous samples occurs due to porosities and weak bonds among particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia: Ti based biomaterials, the ultimate choice for orthopaedic implants–A review. Prog. Mater. Sci. 54(3), 397 (2009).

    CAS  Google Scholar 

  2. Y. Qin, L. Geng, and D. Ni: Dry sliding wear behavior of extruded titanium matrix composite reinforced by in situ TiB whisker and TiC particle. J. Mater. Sci. 46(14), 4980 (2011).

    CAS  Google Scholar 

  3. Z.D. Cui, S.L. Zhu, H.C. Man, and X.J. Yang: Microstructure and wear performance of gradient Ti/TiN metal matrix composite coating synthesized using a gas nitriding technology. Surf. Coat. Technol. 190(2), 309 (2005).

    CAS  Google Scholar 

  4. W. Lu, D. Zhang, X. Zhang, R. Wu, T. Sakata, and H. Mori: Microstructural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique. J. Alloys Compd. 327(1), 248 (2001).

    CAS  Google Scholar 

  5. J.F. Fromentin, K. Debray, Y. Le Petitcorps, E. Martin, and J.M. Quenisset: Interfacial zone design in titanium-matrix composites reinforced by SiC filaments. Compos. Sci. Technol. 56(7), 767 (1996).

    CAS  Google Scholar 

  6. H.W. Jeong, S.J. Kim, Y.T. Hyun, and Y.T. Lee: Densification and compressive strength of in-situ processed Ti/TiB composites by powder metallurgy. Met. Mater. Int. 8(1), 25 (2002).

    CAS  Google Scholar 

  7. K.S.R. Chandran, K.B. Panda, and S.S. Sahay: TiBw-reinforced Ti composites: Processing, properties, application prospects, and research needs. JOM 56(5), 42 (2004).

    CAS  Google Scholar 

  8. S. Gorsse, Y.L. Petitcorps, S. Matar, and F. Rebillat: Investigation of the Young’s modulus of TiB needles in situ produced in titanium matrix composite. Mater. Sci. Eng., A 340(1), 80 (2003).

    Google Scholar 

  9. T.M.T. Gofrey, P.S. Goodwin, and C.M. Ward-Close: Titanium particulate metal matrix composites–Reinforcement, production methods, and mechanical properties. Adv. Eng. Mater. 2(3), 85 (2000).

    Google Scholar 

  10. S. Wei, Z.H. Zhang, F.C. Wang, X.B. Shen, H.N. Cai, S.K. Lee, and L. Wang: Effect of Ti content and sintering temperature on the microstructures and mechanical properties of TiB reinforced titanium composites synthesized by SPS process. Mater. Sci. Eng., A 560, 249 (2013).

    CAS  Google Scholar 

  11. K. Morsi and V.V. Patel: Processing and properties of titanium–titanium boride (TiBw) matrix composites—A review. J. Mater. Sci. 42(6), 2037 (2007).

    CAS  Google Scholar 

  12. S.C. Tjong and Z.Y. Ma: Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng., R 29(3), 49 (2000).

    Google Scholar 

  13. L. Bolzoni, P.G. Esteban, E.M. Ruiz-Navas, and E. Gordo: Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders. J. Mech. Behav. Biomed. Mater. 15, 33 (2012).

    CAS  Google Scholar 

  14. J. Zhu, A. Kamiya, T. Yamada, A. Watazu, W. Shi, and K. Naganuma: Effect of silicon addition on microstructure and mechanical properties of cast titanium alloys. Mater. Trans. 42(2), 336 (2001).

    CAS  Google Scholar 

  15. G. Campoli, M.S. Borleffs, S.A. Yavari, R. Wauthle, H. Weinans, and A.A. Zadpoor: Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Mater. Des. 49, 957 (2013).

    CAS  Google Scholar 

  16. G.N. Levy, R. Schindel, and J.P. Kruth: Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann.-Manuf. Technol. 52(2), 589 (2003).

    Google Scholar 

  17. H. Attar, M. Calin, L.C. Zhang, S. Scudino, and J. Eckert: Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater. Sci. Eng., A 593, 170 (2014).

    CAS  Google Scholar 

  18. L.C. Zhang, D. Klemm, J. Eckert, Y.L. Hao, and T.B. Sercombe: Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scr. Mater. 65(1), 21 (2011).

    CAS  Google Scholar 

  19. L.C. Zhang and T.B. Sercombe: Selective laser melting of low-modulus biomedical Ti-24Nb-4Zr-8Sn Alloy: Effect of laser point distance. Key Eng. Mater. 520, 226 (2012).

    CAS  Google Scholar 

  20. H. Attar, M. Bönisch, M. Calin, L.C. Zhang, S. Scudino, and J. Eckert: Selective laser melting of in situ titanium-titanium boride composites: Processing, microstructure and mechanical properties. Acta Mater. 76, 13 (2014).

    CAS  Google Scholar 

  21. D. Gu, Y.C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe: Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by selective laser melting (SLM): Densification, growth mechanism and wear behavior. Compos. Sci. Technol. 71, 1612 (2011).

    CAS  Google Scholar 

  22. K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Löber, Z. Wang, A.K. Chaubey, U. Kühn, and J. Eckert: Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment. Mater. Sci. Eng., A 590, 153 (2014).

    CAS  Google Scholar 

  23. L. Thijs, K. Kempen, K.J.P. and J. Van Humbeeck: Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 61, 1809 (2013).

    CAS  Google Scholar 

  24. X.J. Wang, L.C. Zhang, M.H. Fang, and T.B. Sercombe: The effect of atmosphere on the structure and properties of a selective laser melted Al-12Si alloy. Mater. Sci. Eng., A 597, 370 (2014).

    CAS  Google Scholar 

  25. H. Feng, D. Jia, and Y. Zhou: Spark plasma sintering reaction synthesized TiB reinforced titanium matrix composites. Composites Part A 36(5), 558 (2005).

    Google Scholar 

  26. D. Galvan, V. Ocelik, Y. Pei, B.J. Kooi, J.T.M. De Hosson, and E. Ramous: Microstructure and properties of TiB/Ti-6Al-4V coatings produced with laser treatments. J. Mater. Eng. Perform. 13(4), 406 (2004).

    CAS  Google Scholar 

  27. P. Heinl, L. Müller, C. Körner, R.F. Singer, and F.A. Müller: Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 4(5), 1536 (2008).

    CAS  Google Scholar 

  28. M. Kobashi, K. Kuze, and N. Kanetake: Cell structure control of porous titanium composite synthesized by combustion reaction. Adv. Eng. Mater. 8(9), 836 (2006).

    CAS  Google Scholar 

  29. Y.J. Chen, B. Feng, Y.P. Zhu, J. Weng, J.X. Wang, and X. Lu: Fabrication of porous titanium implants with biomechanical compatibility. Mater. Lett. 63(30), 2659 (2009).

    CAS  Google Scholar 

  30. D. Gu, Y.-C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach, and R. Poprawe: Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 60(9), 3849 (2012).

    CAS  Google Scholar 

  31. L.C. Zhang, M. Calin, F. Paturaud, and J. Eckert: Deformation-induced grain refinement in body-centered cubic Co-Fe alloys upon room temperature compression. Mater. Sci. Eng., A 527, 5796 (2010).

    Google Scholar 

  32. S.S. Sahay, K.S. Ravichandran, R. Atri, B. Chen, and J. Rubin: Evolution of microstructure and phases in in situ processed Ti–TiB composites containing high volume fractions of TiB whiskers. J. Mater. Res. 14(11), 4214 (1999).

    CAS  Google Scholar 

  33. L.J. Huang, F.Y. Yang, H.T. Hu, X.D. Rong, L. Geng, and L.Z. Wu: TiB whiskers reinforced high temperature titanium Ti60 alloy composites with novel network microstructure. Mater. Des. 51, 421 (2013).

    CAS  Google Scholar 

  34. S. Aich and K.S.R. Chandran: TiB whisker coating on titanium surfaces by solid-state diffusion: Synthesis, microstructure, and mechanical properties. Metall. Mater. Trans. A. 33(11), 3489 (2002).

    Google Scholar 

  35. W.J. Lu, L. Xiao, K. Geng, J.N. Qin, and D. Zhang: Growth mechanism of in situ synthesized TiBw in titanium matrix composites prepared by common casting technique. Mater. Charact. 59(7), 912 (2008).

    CAS  Google Scholar 

  36. K.B. Panda and K.S.R. Chandran: Titanium-titanium boride (Ti-TiB) functionally graded materials through reaction sintering: Synthesis, microstructure, and properties. Metall. Mater. Trans. A 34(9), 1993 (2003).

    Google Scholar 

  37. K.B. Panda and K.S.R. Chandran: Synthesis of ductile titanium-titanium boride (Ti-TiB) composites with a beta-titanium matrix: The nature of TiB formation and composite properties. Metall. Mater. Trans. A 34(6), 1371 (2003).

    Google Scholar 

  38. M. Calin, A. Gebert, A.C. Ghinea, P.F. Gostin, S. Abdi, C. Mickel, and J. Eckert: Designing biocompatible Ti-based metallic glasses for implant applications. Mater. Sci. Eng., C 33(2), 875 (2013).

    CAS  Google Scholar 

  39. G. He, W. Löser, and J. Eckert: In situ formed Ti–Cu–Ni–Sn–Ta nanostructure-dendrite composite with large plasticity. Acta Mater. 51(17), 5223 (2003).

    CAS  Google Scholar 

  40. C.N. Elias, J.H.C. Lima, R. Valiev, and M.A. Meyers: Biomedical applications of titanium and its alloys. JOM 60(3), 46 (2008).

    CAS  Google Scholar 

  41. F.W. Long, Q.W. Jiang, L. Xiao, and X.W. Li: Compressive deformation behaviors of coarse- and ultrafine-grained pure titanium at different temperatures: A comparative study. Mater. Trans. 52(8), 1617 (2011).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr. A. Waske for her technical support and S. Donath and A. Pöhl for their technical assistance. This research was supported under the Australian Research Council’s Projects funding scheme (DP110101653). It has further benefited from support of the European Commission (BioTiNet-ITN G.A. 264635) and through the Deutsche Forschungsgemeinschaft (SFB/Transregio 79, Project M1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Zhang.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attar, H., Bönisch, M., Calin, M. et al. Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies. Journal of Materials Research 29, 1941–1950 (2014). https://doi.org/10.1557/jmr.2014.122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.122

Navigation