Skip to main content

Advertisement

Log in

Additive nanomanufacturing — A review

  • Polymer
  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Additive manufacturing has provided a pathway for inexpensive and flexible manufacturing of specialized components and one-off parts. At the nanoscale, such techniques are less ubiquitous. Manufacturing at the nanoscale is dominated by lithography tools that are too expensive for small- and medium-sized enterprises (SMEs) to invest in. Additive nanomanufacturing (ANM) empowers smaller facilities to design, create, and manufacture on their own while providing a wider material selection and flexible design. This is especially important as nanomanufacturing thus far is largely constrained to 2-dimensional patterning techniques and being able to manufacture in 3-dimensions could open up new concepts. In this review, we outline the state-of-the-art within ANM technologies such as electrohydrodynamic jet printing, dip-pen lithography, direct laser writing, and several single particle placement methods such as optical tweezers and electrokinetic nanomanipulation. The ANM technologies are compared in terms of deposition speed, resolution, and material selection and finally the future prospects of ANM are discussed. This review is up-to-date until April 2014.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16
FIG. 17
FIG. 18
FIG. 19

Similar content being viewed by others

References

  1. F. Feenstra, M. Schaefer, O. Jay, and R. Scudamore: Additive Manufacturing: Strategic Research Agenda. AM Platform: The European collaboration on Additive Manufacturing 1(1), 1 (2013).

    Google Scholar 

  2. T. Boland, A. Ovsianikov, B.N. Chickov, A. Doraiswamy, R.J. Narayan, W.Y. Yeong, K.F. Leong, and C.K. Chua: Rapid prototyping of artificial tissues and medical devices. Adv. Mater. Processess 165(4), 51 (2007).

    Google Scholar 

  3. I. Zein, D.W. Hutmacher, K.C. Tan, and S.H. Teoh: Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4), 1169 (2002).

    CAS  Google Scholar 

  4. A.C. Arias, J.D. MacKenzie, I. McCulloch, J. Rivnay, and A. Salleo: Materials and applications for large area electronics: Solution-based approaches. Chem. Rev. 110(1), 3 (2010).

    CAS  Google Scholar 

  5. L.L. Zhang, X. Zhao, M.D. Stoller, Y.W. Zhu, H.X. Ji, S. Murali, Y.P. Wu, S. Perales, B. Clevenger, and R.S. Ruoff: Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 12(4), 1806 (2012).

    CAS  Google Scholar 

  6. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, and G.M. Whitesides: Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70(23), 4974 (1998).

    CAS  Google Scholar 

  7. M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, and S.R. Quake: Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463), 113 (2000).

    CAS  Google Scholar 

  8. R. van Noort: The future of dental devices is digital. Dent. Mater. 28(1), 3 (2012).

    Google Scholar 

  9. G. Ryan, A. Pandit, and D.P. Apatsidis: Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27(13), 2651 (2006).

    CAS  Google Scholar 

  10. J. Giannatsis and V. Dedoussis: Additive fabrication technologies applied to medicine and health care: A review. Int. J. Adv. Manuf. Technol. 40(1–2), 116 (2009).

    Google Scholar 

  11. R.J. Narayan, A. Doraiswamy, D.B. Chrisey, and B.N. Chichkov: Medical prototyping using two photon polymerization. Mater. Today 13(12), 42 (2010).

    CAS  Google Scholar 

  12. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe: Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 57(3), 133 (2012).

    CAS  Google Scholar 

  13. Y. Jang, I.H. Tambunan, H. Tak, V.D. Nguyen, T. Kang, and D. Byun: Non-contact printing of high aspect ratio Ag electrodes for polycrystalline silicone solar cell with electrohydrodynamic jet printing. Appl. Phys. Lett. 102(12), 123901 (2013).

    Google Scholar 

  14. F.C. Krebs: Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93(4), 394 (2009).

    CAS  Google Scholar 

  15. A.G. Mark, J.G. Gibbs, T.C. Lee, and P. Fischer: Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 12(9), 802 (2013).

    CAS  Google Scholar 

  16. J.U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay, C.Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis, P.M. Ferreira, and J.A. Rogers: High-resolution electrohydrodynamic jet printing. Nat. Mater. 6(10), 782 (2007).

    CAS  Google Scholar 

  17. S.Y. Min, T.S. Kim, B.J. Kim, H. Cho, Y.Y. Noh, H. Yang, J.H. Cho, and T.W. Lee: Large-scale organic nanowire lithography and electronics. Nat. Commun. 4, 1773 (2013).

    Google Scholar 

  18. C. Wagner and N. Harned: EUV lithography: Lithography gets extreme. Nat. Photonics 4(1), 24 (2010).

    CAS  Google Scholar 

  19. V.R. Manfrinato, L.H. Zhang, D. Su, H.G. Duan, R.G. Hobbs, E.A. Stach, and K.K. Berggren: Resolution limits of electron-beam lithography toward the atomic scale. Nano Lett. 13(4), 1555 (2013).

    CAS  Google Scholar 

  20. E.D. Williams, R.U. Ayres, and M. Heller: The 1.7 kilogram microchip: Energy and material use in the production of semiconductor devices. Environ. Sci. Technol. 36(24), 5504 (2002).

    CAS  Google Scholar 

  21. P.R. Couchman and W.A. Jesser: Thermodynamic theory of size dependence of melting temperature in metals. Nature 269(5628), 481 (1977).

    CAS  Google Scholar 

  22. G.L. Allen, R.A. Bayles, W.W. Gile, and W.A. Jesser: Small particle melting of pure metals. Thin Solid Films 144(2), 297 (1986).

    CAS  Google Scholar 

  23. D.S. Ginger, H. Zhang, and C.A. Mirkin: The evolution of dip-pen nanolithography. Angew. Chem., Int. Ed. 43(1), 30 (2004).

    Google Scholar 

  24. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel: Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49(1), 57 (1982).

    Google Scholar 

  25. G. Binnig, C.F. Quate, and C. Gerber: Atomic force microscope. Phys. Rev. Lett. 56(9), 930 (1986).

    CAS  Google Scholar 

  26. J.K. Gimzewski and C. Joachim: Nanoscale science of single molecules using local probes. Science 283(5408), 1683 (1999).

    CAS  Google Scholar 

  27. D.M. Eigler and E.K. Schweizer: Positioning single atoms with a scanning tunnelling microscope. Nature 344(6266), 524 (1990).

    CAS  Google Scholar 

  28. Y. Xia and G.M. Whitesides: Soft lithography. Angew. Chem. Int. Ed. 37(5), 550 (1998).

    CAS  Google Scholar 

  29. J-F. Liu, S. Cruchon-Dupeyrat, J.C. Garno, J. Frommer, and G-Y. Liu: Three-dimensional nanostructure construction via nanografting: Positive and negative pattern transfer. Nano Lett. 2(9), 937 (2002).

    CAS  Google Scholar 

  30. S.C. Minne, S.R. Manalis, A. Atalar, and C.F. Quate: Independent parallel lithography using the atomic force microscope. J. Vac. Sci. Technol., B 14(4), 2456 (1996).

    CAS  Google Scholar 

  31. S.C. Minne, J.D. Adams, G. Yaralioglu, S.R. Manalis, A. Atalar, and C.F. Quate: Centimeter scale atomic force microscope imaging and lithography. Appl. Phys. Lett. 73(12), 1742 (1998).

    CAS  Google Scholar 

  32. K. Salaita, Y. Wang, and C.A. Mirkin: Applications of dip-pen nanolithography. Nat. Nanotechnol. 2(3), 145 (2007).

    CAS  Google Scholar 

  33. B.D. Gates, Q. Xu, M. Stewart, D. Ryan, C.G. Willson, and G.M. Whitesides: New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 105(4), 1171 (2005).

    CAS  Google Scholar 

  34. H. Zhang and C.A. Mirkin: DPN-generated nanostructures made of gold, silver, and palladium. Chem. Mater. 16(8), 1480 (2004).

    CAS  Google Scholar 

  35. K. Brown, D. Eichelsdoerfer, X. Liao, S. He, and C. Mirkin: Material transport in dip-pen nanolithography. Front. Phys. 9(3), 385 (2014).

    Google Scholar 

  36. R.D. Piner, J. Zhu, F. Xu, S. Hong, and C.A. Mirkin: Dip-pen nanolithography. Science 283(5402), 661 (1999).

    CAS  Google Scholar 

  37. D. Nyamjav and A. Ivanisevic: Properties of polyelectrolyte templates generated by dip-pen nanolithography and microcontact printing. Chem. Mater. 16(25), 5216 (2004).

    CAS  Google Scholar 

  38. R. Suriano, S. Biella, F. Cesura, M. Levi, and S. Turri: Thermoplastic polymers surfaces for dip-pen nanolithography of oligonucleotides. Appl. Surf. Sci. 273, 717 (2013).

    CAS  Google Scholar 

  39. S. Park, H.W. Lee, H. Wang, S. Selvarasah, M.R. Dokmeci, Y.J. Park, S.N. Cha, J.M. Kim, and Z. Bao: Highly effective separation of semiconducting carbon nanotubes verified via short-channel devices fabricated using dip-pen nanolithography. ACS Nano 6(3), 2487 (2012).

    CAS  Google Scholar 

  40. Y. Wang, D. Maspoch, S. Zou, G.C. Schatz, R.E. Smalley, and C.A. Mirkin: Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc. Natl. Acad. Sci. U. S. A. 103(7), 2026 (2006).

    CAS  Google Scholar 

  41. Y. Li, B.W. Maynor, and J. Liu: Electrochemical AFM “dip-pen”’ nanolithography. J. Am. Chem. Soc. 123(9), 2105 (2001).

    CAS  Google Scholar 

  42. L. Fu, X. Liu, Y. Zhang, V.P. Dravid, and C.A. Mirkin: Nanopatterning of “hard” magnetic nanostructures via dip-pen nanolithography and a sol-based ink. Nano Lett. 3(6), 757 (2003).

    CAS  Google Scholar 

  43. S. Lenhert, P. Sun, Y. Wang, H. Fuchs, and C.A. Mirkin: Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns. Small 3(1), 71 (2007).

    CAS  Google Scholar 

  44. M. Hirtz, O. Antonios, G. Thanasis, F. Harald, and V. Aravind: Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography. Nat. Commun. 4, (2013).

  45. K-B. Lee, S-J. Park, C.A. Mirkin, J.C. Smith, and M. Mrksich: Protein nanoarrays generated by dip-pen nanolithography. Science 295(5560), 1702 (2002).

    CAS  Google Scholar 

  46. K-B. Lee, J-H. Lim, and C.A. Mirkin: Protein nanostructures formed via direct-write dip-pen nanolithography. J. Am. Chem. Soc. 125(19), 5588 (2003).

    CAS  Google Scholar 

  47. L.M. Demers, D.S. Ginger, S-J. Park, Z. Li, S-W. Chung, and C.A. Mirkin: Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296(5574), 1836 (2002).

    CAS  Google Scholar 

  48. R.A. Vega, C.K.F. Shen, D. Maspoch, J.G. Robach, R.A. Lamb, and C.A. Mirkin: Monitoring single-cell infectivity from virus-particle nanoarrays fabricated by parallel dip-pen nanolithography. Small 3(9), 1482 (2007).

    CAS  Google Scholar 

  49. S.D. Cronin, K. Sabolsky, E.M. Sabolsky, and K.A. Sierros: Dip pen nanolithography and transfer of ZnO patterns on plastics for large-area flexible optoelectronic applications. Thin Solid Films 552, 50 (2014).

    CAS  Google Scholar 

  50. K. Salaita, Y. Wang, J. Fragala, R.A. Vega, C. Liu, and C.A. Mirkin: Massively parallel dip–pen nanolithography with 55 000-pen two-dimensional arrays. Angew. Chem. Int. Ed. 45(43), 7220 (2006).

    CAS  Google Scholar 

  51. W. Shim, A.B. Braunschweig, X. Liao, J.N. Chai, J.K. Lim, G.F. Zheng, and C.A. Mirkin: Hard-tip, soft-spring lithography. Nature 469(7331), 516 (2011).

    CAS  Google Scholar 

  52. L.R. Giam and C.A. Mirkin: Cantilever-free scanning probe molecular printing. Angew. Chem. Int. Ed. 50(33), 7482 (2011).

    CAS  Google Scholar 

  53. F. Huo, Z. Zheng, G. Zheng, L.R. Giam, H. Zhang, and C.A. Mirkin: Polymer pen lithography. Science 321(5896), 1658 (2008).

    CAS  Google Scholar 

  54. J. Chai, F. Huo, Z. Zheng, L.R. Giam, W. Shim, and C.A. Mirkin: Scanning probe block copolymer lithography. Proce. Natl. Acad. Sci. 107(47), 20202 (2010).

    CAS  Google Scholar 

  55. G. Liu, D.J. Eichelsdoerfer, B. Rasin, Y. Zhou, K.A. Brown, X. Liao, and C.A. Mirkin: Delineating the pathways for the site-directed synthesis of individual nanoparticles on surfaces. Proc. Natl. Acad. Sci. 110(3), 887 (2013).

    CAS  Google Scholar 

  56. J. Chai, L.S. Wong, L. Giam, and C.A. Mirkin: Single-molecule protein arrays enabled by scanning probe block copolymer lithography. Proc. Natl. Acad. Sci. 108(49), 19521 (2011).

    CAS  Google Scholar 

  57. K.A. Brown, D.J. Eichelsdoerfer, W. Shim, B. Rasin, B. Radha, X. Liao, A.L. Schmucker, G. Liu, and C.A. Mirkin: A cantilever-free approach to dot-matrix nanoprinting. Proc. Natl. Acad. Sci. 110(32), 12921 (2013).

    CAS  Google Scholar 

  58. S.D. Bian, S.B. Zieba, W. Morris, X. Han, D.C. Richter, K.A. Brown, C.A. Mirkin, and A.B. Braunschweig: Beam pen lithography as a new tool for spatially controlled photochemistry, and its utilization in the synthesis of multivalent glycan arrays. Chem. Sci. 5(5), 2023 (2014).

    CAS  Google Scholar 

  59. J.M. Curran, R. Chen, R. Stokes, E. Irvine, D. Graham, E. Gubbins, D. Delaney, N. Amro, R. Sanedrin, H. Jamil, and J.A. Hunt: Nanoscale definition of substrate materials to direct human adult stem cells towards tissue specific populations. J. Mater. Sci. Mater. Med. 21(3), 1021 (2010).

    CAS  Google Scholar 

  60. S. Sekula, J. Fuchs, S. Weg-Remers, P. Nagel, S. Schuppler, J. Fragala, N. Theilacker, M. Franueb, C. Wingren, P. Ellmark, C.A.K. Borrebaeck, C.A. Mirkin, H. Fuchs, and S. Lenhert: Multiplexed lipid dip-pen nanolithography on subcellular scales for the templating of functional proteins and cell culture. Small 4(10), 1785 (2008).

    CAS  Google Scholar 

  61. K. Mitsakakis, S. Sekula-Neuner, S. Lenhert, H. Fuchs, and E. Gizeli: Convergence of dip-pen nanolithography and acoustic biosensors towards a rapid-analysis multi-sample microsystem. Analyst 137(13), 3076 (2012).

    CAS  Google Scholar 

  62. X.Z. Zhou, F. Boey, F.W. Huo, L. Huang, and H. Zhang: Chemically functionalized surface patterning. Small 7(16), 2273 (2011).

    CAS  Google Scholar 

  63. C.C. Wu, D.N. Reinhoudt, C. Otto, V. Subramaniam, and A.H. Velders: Strategies for patterning biomolecules with dip-pen nanolithography. Small 7(8), 989 (2011).

    CAS  Google Scholar 

  64. H. Bhaskaran, B. Gotsmann, A. Sebastian, U. Drechsler, M.A. Lantz, M. Despont, P. Jaroenapibal, R.W. Carpick, Y. Chen, and K. Sridharan: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5(3), 181 (2010).

    CAS  Google Scholar 

  65. H. Bhaskaran, A. Sebastian, and M. Despont: Nanoscale PtSi tips for conducting probe technologies. IEEE. Trans. Nanotechnol. 8(1), 128 (2009).

    Google Scholar 

  66. H. Bhaskaran, A. Sebastian, U. Drechsler, and M. Despont: Encapsulated tips for reliable nanoscale conduction in scanning probe technologies. Nanotechnology 20 (10), 105701 (2009).

    Google Scholar 

  67. P.C. Fletcher, J.R. Felts, Z.T. Dai, T.D. Jacobs, H.J. Zeng, W. Lee, P.E. Sheehan, J.A. Carlisle, R.W. Carpick, and W.P. King: Wear-resistant diamond nanoprobe tips with integrated silicon heater for tip-based nanomanufacturing. ACS Nano 4(6), 3338 (2010).

    CAS  Google Scholar 

  68. J.T. Delaney, P.J. Smith, and U.S. Schubert: Inkjet printing of proteins. Soft Matter 5(24), 4866 (2009).

    CAS  Google Scholar 

  69. S.B. Fuller, E.J. Wilhelm, and J.M. Jacobson: Ink-jet printed nanoparticle microelectromechanical systems. J. Microelectromech. Syst. 11(1), 54 (2002).

    Google Scholar 

  70. A. Barrero and I.G. Loscertales: Micro- and nanoparticles via capillary flows. Annu. Rev. Fluid Mech. 39, 89 (2007).

    Google Scholar 

  71. H.K. Choi, J.U. Park, O.O. Park, P.M. Ferreira, J.G. Georgiadis, and J.A. Rogers: Scaling laws for jet pulsations associated with high-resolution electrohydrodynamic printing. Appl. Phys. Lett. 92(12), 123109 (2008).

    Google Scholar 

  72. P. Galliker, J. Schneider, H. Eghlidi, S. Kress, V. Sandoghdar, and D. Poulikakos: Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets. Nat. Commun. 3, 890 (2012).

    CAS  Google Scholar 

  73. M.S. Onses, C. Song, L. Williamson, E. Sutanto, P.M. Ferreira, A.G. Alleyne, P.F. Nealey, H. Ahn, and J.A. Rogers: Hierarchical patterns of three-dimensional block-copolymer films formed by electrohydrodynamic jet printing and self-assembly. Nat. Nanotechnol. 8(9), 667 (2013).

    CAS  Google Scholar 

  74. Y. Huang, N. Bu, Y. Duan, Y. Pan, H. Liu, Z. Yin, and Y. Xiong: Electrohydrodynamic direct-writing. Nanoscale 5(24), 12007 (2013).

    CAS  Google Scholar 

  75. B. Sundaray, V. Subramanian, T.S. Natarajan, R.Z. Xiang, C.C. Chang, and W.S. Fann: Electrospinning of continuous aligned polymer fibers. Appl. Phys. Lett. 84(7), 1222 (2004).

    CAS  Google Scholar 

  76. Y.A. Huang, X.M. Wang, Y.Q. Duan, N.B. Bu, and Z.P. Yin: Controllable self-organization of colloid microarrays based on finite length effects of electrospun ribbons. Soft Matter 8(32), 8302 (2012).

    CAS  Google Scholar 

  77. G.S. Bisht, G. Canton, A. Mirsepassi, L. Kuinsky, S. Oh, D. Dunn-Rankin, and M.J. Madou: Controlled continuous patterning of polymeric nanofibers on three-dimensional substrates using low-voltage near-field electrospinning. Nano Lett. 11(4), 1831 (2011).

    CAS  Google Scholar 

  78. N. Bu, Y. Huang, X. Wang, and Z. Yin: Continuously tunable and oriented nanofiber direct-written by mechano-electrospinning. Mater. Manuf. Processes 27(12), 1318 (2012).

    CAS  Google Scholar 

  79. M. Lee and H.Y. Kim: Toward nanoscale three-dimensional printing: Nanowalls built of electrospun nanofibers. Langmuir 30(5), 1210 (2014).

    CAS  Google Scholar 

  80. D. Li and Y.N. Xia: Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 4(5), 933 (2004).

    CAS  Google Scholar 

  81. Y.Z. Zhang, X. Wang, Y. Feng, J. Li, C.T. Lim, and S. Ramakrishna: Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release. Biomacromolecules 7(4), 1049 (2006).

    CAS  Google Scholar 

  82. D.Z. Wang, S.N. Jayasinghe, M.J. Edirisinghe, and Z.B. Luklinska: Coaxial electrohydrodynamic direct writing of nano-suspensions. J. Nanopart. Res. 9(5), 825 (2007).

    CAS  Google Scholar 

  83. W. Nuansing, D. Frauchiger, F. Huth, A. Rebollo, R. Hillenbrand, and A.M. Bittner: Electrospinning of peptide and protein fibres: Approaching the molecular scale. Faraday Discuss. 166, 209 (2013).

    CAS  Google Scholar 

  84. O.V. Salata: Tools of nanotechnology: Electrospray. Curr. Nanosci. 1(1), 25 (2005).

    CAS  Google Scholar 

  85. A. Jaworek and A.T. Sobczyk: Electrospraying route to nanotechnology: An overview. J. Electrostat. 66(3–4), 197 (2008).

    CAS  Google Scholar 

  86. D.Y. Lee, Y.S. Shin, S.E. Park, T.U. Yu, and J. Hwang: Electrohydrodynamic printing of silver nanoparticles by using a focused nanocolloid jet. Appl. Phys. Lett. 90(8), 081905 (2007).

    Google Scholar 

  87. J. Fischer, T. Ergin, and M. Wegener: Three-dimensional polarization-independent visible-frequency carpet invisibility cloak. Opt. Lett. 36(11), 2059 (2011).

    Google Scholar 

  88. B-B. Xu, H. Xia, L-G. Niu, Y-L. Zhang, K. Sun, Q-D. Chen, Y. Xu, Z-Q. Lv, Z-H. Li, H. Misawa, and H-B. Sun: Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating. Small 6(16), 1762 (2010).

    CAS  Google Scholar 

  89. J. Fischer and M. Wegener: Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy. Opt. Mater. Express 1(4), 614 (2011).

    CAS  Google Scholar 

  90. Y. Cao and M. Gu: λ/26 silver nanodots fabricated by direct laser writing through highly sensitive two-photon photoreduction. Appl. Phys. Lett. 103(21), 213104 (2013).

    Google Scholar 

  91. S. Kawata, H.B. Sun, T. Tanaka, and K. Takada: Finer features for functional microdevices. Nature 412(6848), 697 (2001).

    CAS  Google Scholar 

  92. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C.M. Soukoulis: Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3(7), 444 (2004).

    CAS  Google Scholar 

  93. T. Ergin, N. Stenger, P. Brenner, J.B. Pendry, and M. Wegener: Three-dimensional invisibility cloak at optical wavelengths. Science 328(5976), 337 (2010).

    CAS  Google Scholar 

  94. M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher: 3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces. Small 8(19), 3009 (2012).

    Google Scholar 

  95. X. Li, Y. Cao, and M. Gu: Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam. Opt. Lett. 36(13), 2510 (2011).

    Google Scholar 

  96. E. Kabouraki, A.N. Giakoumaki, P. Danilevicius, D. Gray, M. Vamvakaki, and M. Farsari: Redox multiphoton polymerization for 3D nanofabrication. Nano Lett. 13(8), 3831 (2013).

    CAS  Google Scholar 

  97. N. Vasilantonakis, K. Terzaki, I. Sakellari, V. Purlys, D. Gray, C.M. Soukoulis, M. Vamvakaki, M. Kafesaki, and M. Farsari: Three-dimensional metallic photonic crystals with optical bandgaps. Adv. Mater. 24(8), 1101 (2012).

    CAS  Google Scholar 

  98. I. Staude, M. Decker, M.J. Ventura, C. Jagadish, D.N. Neshev, M. Gu, and Y.S. Kivshar: Hybrid high-resolution three-dimensional nanofabrication for metamaterials and nanoplasmonics. Adv. Mater. 25(9), 1260 (2013).

    CAS  Google Scholar 

  99. A. Frölich, J. Fischer, T. Zebrowski, K. Busch, and M. Wegener: Titania woodpiles with complete three-dimensional photonic bandgaps in the visible. Adv. Mater. 25(26), 3588 (2013).

    Google Scholar 

  100. J. Fischer and M. Wegener: Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev. 7(1), 22 (2013).

    CAS  Google Scholar 

  101. Y. Cao, Z. Gan, B. Jia, R.A. Evans, and M. Gu: High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization. Opt. Express 19(20), 19486 (2011).

    CAS  Google Scholar 

  102. E. Rittweger, K.Y. Han, S.E. Irvine, C. Eggeling, and S.W. Hell: STED microscopy reveals crystal colour centres with nanometric resolution. Nat. Photonics 3(3), 144 (2009).

    CAS  Google Scholar 

  103. J. Fischer, G. von Freymann, and M. Wegener: The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Adv. Mater. 22(32), 3578 (2010).

    CAS  Google Scholar 

  104. M.F. El-Kady and R.B. Kaner: Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013).

    Google Scholar 

  105. J.B. Park, W. Xiong, Y. Gao, M. Qian, Z.Q. Xie, M. Mitchell, Y.S. Zhou, G.H. Han, L. Jiang, and Y.F. Lu: Fast growth of graphene patterns by laser direct writing. Appl. Phys. Lett. 98(12), 123109 (2011).

    Google Scholar 

  106. K. Kwok and W.K.S. Chiu: Growth of carbon nanotubes by open-air laser-induced chemical vapor deposition. Carbon 43(2), 437 (2005).

    CAS  Google Scholar 

  107. M. Mahjouri-Samani, Y.S. Zhou, W. Xiong, Y. Gao, M. Mitchell, L. Jiang, and Y.F. Lu: Diameter modulation by fast temperature control in laser-assisted chemical vapor deposition of single-walled carbon nanotubes. Nanotechnology 21(39), 395601 (2010).

    CAS  Google Scholar 

  108. S. Hong, J. Yeo, G. Kim, D. Kim, H.H. Lee, J. Kwon, P. Lee, and S.H. Ko: Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. ACS Nano 7(6), 5024 (2013).

    CAS  Google Scholar 

  109. X. Liao, K.A. Brown, A.L. Schmucker, G.L. Liu, S. He, W. Shim, and C.A. Mirkin: Desktop nanofabrication with massively multiplexed beam pen lithography. Nat. Commun. 4, 2103 (2013).

    Google Scholar 

  110. G.J. Leggett: Scanning near-field photolithography-surface photochemistry with nanoscale spatial resolution. Chem. Soc. Rev. 35(11), 1150 (2006).

    CAS  Google Scholar 

  111. E. ul Haq, Z.M. Liu, Y.A. Zhang, S.A.A. Ahmad, L.S. Wong, S.P. Armes, J.K. Hobbs, G.J. Leggett, J. Micklefield, C.J. Roberts, and J.M.R. Weaver: Parallel scanning near-field photolithography: The snomipede. Nano Lett. 10(11), 4375 (2010).

    CAS  Google Scholar 

  112. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D.B. Bogy, and X. Zhang: Flying plasmonic lens in the near field for high-speed nanolithography. Nat. Nanotechnol. 3(12), 733 (2008).

    CAS  Google Scholar 

  113. Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance, and S. Morita: Atom inlays performed at room temperature using atomic force microscopy. Nat. Mater. 4(2), 156 (2005).

    CAS  Google Scholar 

  114. O. Custance, R. Perez, and S. Morita: Atomic force microscopy as a tool for atom manipulation. Nat. Nanotechnol. 4(12), 803 (2009).

    CAS  Google Scholar 

  115. D. Gohlke, R. Mishra, O.D. Restrepo, D. Lee, W. Windl, and J. Gupta: Atomic-scale engineering of the electrostatic landscape of semiconductor surfaces. Nano Lett. 13(6), 2418 (2013).

    CAS  Google Scholar 

  116. D.A. Olyanich, V.G. Kotlyar, T.V. Utas, A.V. Zotov, and A.A. Saranin: The manipulation of C-60 in molecular arrays with an STM tip in regimes below the decomposition threshold. Nanotechnology 24(5), 055302 (2013).

    Google Scholar 

  117. K. Morgenstern, N. Lorente, and K.H. Rieder: Controlled manipulation of single atoms and small molecules using the scanning tunnelling microscope. Phys. Status Solidi B 250(9), 1671 (2013).

    CAS  Google Scholar 

  118. M. Fuechsle, J.A. Miwa, S. Mahapatra, H. Ryu, S. Lee, O. Warschkow, L.C.L. Hollenberg, G. Klimeck, and M.Y. Simmons: A single-atom transistor. Nat. Nanotechnol. 7(4), 242 (2012).

    CAS  Google Scholar 

  119. S.Y. Qin, T.H. Kim, Z.H. Wang, and A.P. Li: Nanomanipulation and nanofabrication with multi-probe scanning tunneling microscope: From individual atoms to nanowires. Rev. Sci. Instrum. 83(6), 063704 (2012).

    Google Scholar 

  120. K. Molhave, T. Wich, A. Kortschack, and P. Boggild: Pick-and-place nanomanipulation using microfabricated grippers. Nanotechnology 17(10), 2434 (2006).

    Google Scholar 

  121. O. Sardan, V. Eichhorn, D.H. Petersen, S. Fatikow, O. Sigmund, and P. Boggild: Rapid prototyping of nanotube-based devices using topology-optimized microgrippers. Nanotechnology 19(49), 495503 (2008).

    CAS  Google Scholar 

  122. A. Cagliani, R. Wierzbicki, L. Occhipinti, D.H. Petersen, K.N. Dyvelkov, O.S. Sukas, B.G. Herstrom, T. Booth, and P. Boggild: Manipulation and in situ transmission electron microscope characterization of sub-100 nm nanostructures using a microfabricated nanogripper. J. Micromech. Microeng. 20(3), 035009 (2010).

    Google Scholar 

  123. S. Kim, D.C. Ratchford, and X. Li: Atomic force microscope nanomanipulation with simultaneous visual guidance. ACS Nano 3(10), 2989 (2009).

    CAS  Google Scholar 

  124. S. Kim, F. Shafiei, D. Ratchford, and X. Li: Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures. Nanotechnology 22(11), 115301 (2011).

    Google Scholar 

  125. J. Castillo, M. Dimaki, and W.E. Svendsen: Manipulation of biological samples using micro and nano techniques. Integr. Biol. 1(1), 30 (2009).

    CAS  Google Scholar 

  126. T. Junno, K. Deppert, L. Montelius, and L. Samuelson: Controlled manipulation of nanoparticles with an atomic force microscope. Appl. Phys. Lett. 66(26), 3627 (1995).

    CAS  Google Scholar 

  127. G. Li, N. Xi, M. Yu, and W-K. Fung: Development of augmented reality system for AFM-based nanomanipulation. IEEE Trans. Nanotechnol. 9(2), 358 (2004).

    Google Scholar 

  128. G. Li, N. Xi, H. Chen, C. Pomeroy, and M. Prokos: “Videolized” atomic force microscopy for interactive nanomanipulation and nanoassembly. IEEE Trans. Nanotechnol. 4(5), 605 (2005).

    Google Scholar 

  129. N. Xi and G. Li: Introduction to Nanorobotic Manipulation and Assembly (Artech House, Norwood, 2012), p. 1.

    Google Scholar 

  130. J. Zhang, S. Member, N. Xi, and H. Chen: Design, manufacturing, and testing of single-carbon-nanotube-based infrared sensors. IEEE Trans. Nanotechnol. 8(2), 245 (2009).

    Google Scholar 

  131. X. Xiong, P. Makaram, A. Busnaina, K. Bakhtari, S. Somu, N. McGruer, and J. Park: Large scale directed assembly of nanoparticles using nanotrench templates. Appl. Phys. Lett. 89(19), 193108 (2006).

    Google Scholar 

  132. J-U. Park, S. Lee, S. Unarunotai, Y. Sun, S. Dunham, T. Song, P.M. Ferreira, A.G. Alleyene, and U. Paik, and J.A. Rogers: Nanoscale, electrified liquid jets for high-resolution printing of charge. Nano Lett. 10(2), 584 (2010).

    CAS  Google Scholar 

  133. M. Kolíbal, M. Konečný, F. Ligmajer, D. Škoda, T. Vystavěl, J. Zlámal, P. Varga, and T. Šikola: Guided assembly of gold colloidal nanoparticles on silicon substrates prepatterned by charged particle beams. ACS Nano 6(11), 10098 (2012).

    Google Scholar 

  134. Y.S. Zhou, Y. Liu, G. Zhu, Z-H. Lin, C. Pan, Q. Jing, and Z.L. Wang: In situ quantitative study of nanoscale triboelectrification and patterning. Nano Lett. 13(6), 2771 (2013).

    CAS  Google Scholar 

  135. C. Yilmaz, T-H. Kim, and S. Somu, and A.A. Busnaina: Large-Scale nanorods nanomanufacturing by electric-field-directed assembly for nanoscale device applications. IEEE Trans. Nanotechnol. 9(5), 653 (2010).

    Google Scholar 

  136. N.R. Wood, A.I. Wolsiefer, R.W. Cohn, and S.J. Williams: Dielectrophoretic trapping of nanoparticles with an electrokinetic nanoprobe. Electrophoresis 34(13), 1922 (2013).

    CAS  Google Scholar 

  137. K.A. Brown and R.M. Westervelt: Triaxial AFM probes for noncontact trapping and manipulation. Nano Lett. 11(8), 3197 (2011).

    CAS  Google Scholar 

  138. K.A. Brown and R.M. Westervelt: Proposed triaxial atomic force microscope contact-free tweezers for nanoassembly. Nanotechnology 20(38), 385302 (2009).

    Google Scholar 

  139. A. Jonás and P. Zemánek: Light at work: The use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 29(24), 4813 (2008).

    Google Scholar 

  140. L. Tong, V.D. Miljković, and M. Käll: Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett. 10(1), 268 (2010).

    CAS  Google Scholar 

  141. M.J. Guffey and N.F. Scherer: All-optical patterning of Au nanoparticles on surfaces using optical traps. Nano Lett. 10(11), 4302 (2010).

    CAS  Google Scholar 

  142. Z. Yan, J. Sweet, J.E. Jureller, M.J. Guffey, M. Pelton, and N.F. Scherer: Controlling the position and orientation of single silver nanowires on a surface using structured optical fields. ACS Nano 6(9), 8144 (2012).

    CAS  Google Scholar 

  143. Z. Yan, R.A. Shah, G. Chado, S.K. Gray, M. Pelton, and N.F. Scherer: Guiding spatial arrangements of silver nanoparticles by optical binding interactions in shaped light fields. ACS Nano 7(2), 1790 (2013).

    CAS  Google Scholar 

  144. Y-F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson: Controlled photonic manipulation of proteins and other nanomaterials. Nano Lett. 12(3), 1633 (2012).

    Google Scholar 

  145. H-W. Huang, P. Bhadrachalam, V. Ray, and S.J. Koh: Single-particle placement via self-limiting electrostatic gating. Appl. Phys. Lett. 93(7), 073110 (2008).

    Google Scholar 

  146. J. Berthelot, S.S. Aćimović, M.L. Juan, M.P. Kreuzer, J. Renger, and R. Quidant: Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat. Nanotechnol. 9(4), 295 (2014).

    CAS  Google Scholar 

  147. M. Fedoruk, M. Meixner, S. Carretero-Palacios, T. Lohmüller, and J. Feldmann: Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles. ACS Nano 7(9), 7648 (2013).

    CAS  Google Scholar 

  148. K.J.M. Bishop, C.E. Wilmer, S. Soh, and B.A. Grzybowski: Nanoscale forces and their uses in self-assembly. Small 5(14), 1600 (2009).

    CAS  Google Scholar 

  149. K. Sakakibara, J.P. Hill, and K. Ariga: Thin-film-based nanoarchitectures for soft matter: Controlled assemblies into two-dimensional worlds. Small 7(10), 1288 (2011).

    CAS  Google Scholar 

  150. S.J. Barrow, A.M. Funston, X.Z. Wei, and P. Mulvaney: DNA-directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures. Nano Today 8(2), 138 (2013).

    CAS  Google Scholar 

  151. J.X. Gong, G.D. Li, and Z.Y. Tang: Self-assembly of noble metal nanocrystals: Fabrication, optical property, and application. Nano Today 7(6), 564 (2012).

    CAS  Google Scholar 

  152. E. Bellido, N. Domingo, I. Ojea-Jimenez, and D. Ruiz-Molina: Structuration and integration of magnetic nanoparticles on surfaces and devices. Small 8(10), 1465 (2012).

    CAS  Google Scholar 

  153. B. Dong, T. Zhou, H. Zhang, and C.Y. Li: Directed self-assembly of nanoparticles for nanomotors. ACS Nano 7(6), 5192 (2013).

    CAS  Google Scholar 

  154. J.F. Galisteo-López, M. Ibisate, R. Sapienza, L.S. Froufe-Pérez, A. Blanco, and C. López: Self-assembled photonic structures. Adv. Mater. 23(1), 30 (2011).

    Google Scholar 

  155. F.S. Kim, G. Ren, and S.A. Jenekhe: One-dimensional nanostructures of π-conjugated molecular systems: Assembly, properties, and applications from photovoltaics, sensors, and nanophotonics to nanoelectronics. Chem. Mater. 23(3), 682 (2011).

    CAS  Google Scholar 

  156. T. Kraus, L. Malaquin, H. Schmid, W. Riess, N.D. Spencer, and H. Wolf: Nanoparticle printing with single-particle resolution. Nat. Nanotechnol. 2(9), 570 (2007).

    CAS  Google Scholar 

  157. H. Park, A. Afzali, S-J. Han, G.S. Tulevski, A.D. Franklin, J. Tersoff, J.B. Hannon, and W. Haensch: High-density integration of carbon nanotubes via chemical self-assembly. Nat. Nanotechnol. 7(12), 787 (2012).

    CAS  Google Scholar 

  158. Y. Cui, M.T. Bjork, J.A. Liddle, C. Sonnichsen, B. Boussert, and A.P. Alivisatos: Integration of colloidal nanocrystals into lithographically patterned devices. Nano Lett. 4(6), 1093 (2004).

    CAS  Google Scholar 

  159. A. Carlson, A.M. Bowen, Y.G. Huang, R.G. Nuzzo, and J.A. Rogers: Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 24(39), 5284 (2012).

    CAS  Google Scholar 

  160. Y. Zheng, C.H. Lalander, T. Thai, S. Dhuey, S. Cabrini, and U. Bach: Gutenberg-style printing of self-assembled nanoparticle arrays: Electrostatic nanoparticle immobilization and DNA-mediated transfer. Angew. Chem., Int. Ed. Engl. 50(19), 4398 (2011).

    CAS  Google Scholar 

  161. B.F. Porter, L. Abelmann, and H. Bhaskaran: Design parameters for voltage-controllable directed assembly of single nanoparticles. Nanotechnology 24(40), 405304 (2013).

    Google Scholar 

  162. J.J. Gooding and S. Ciampi: The molecular level modification of surfaces: From self-assembled monolayers to complex molecular assemblies. Chem. Soc. Rev. 40(5), 2704 (2011).

    CAS  Google Scholar 

  163. A. Pulsipher and M.N. Yousaf: Surface chemistry and cell biological tools for the analysis of cell adhesion and migration. ChemBioChem 11(6), 745 (2010).

    CAS  Google Scholar 

  164. J. Martinez, R.V. Martinez, and R. Garcia: Silicon nanowire transistors with a channel width of 4 nm fabricated by atomic force microscope nanolithography. Nano Lett. 8(11), 3636 (2008).

    CAS  Google Scholar 

  165. S. Hong and C.A. Mirkin: A nanoplotter with both parallel and serial writing capabilities. Science 288(5472), 1808 (2000).

    CAS  Google Scholar 

  166. S. Hong, J. Zhu, and C.A. Mirkin: Multiple ink nanolithography: Toward a multiple-pen nano-plotter. Science 286(5439), 523 (1999).

    CAS  Google Scholar 

  167. D.J. Pena, M.P. Raphael, and J.M. Byers: “Dip-Pen” nanolithography in registry with photolithography for biosensor development. Langmuir 19(21), 9028 (2003).

    CAS  Google Scholar 

  168. E. Williams: Energy intensity of computer manufacturing: Hybrid assessment combining process and economic input-output methods. Environ. Sci. Technol. 38(22), 6166 (2004).

    CAS  Google Scholar 

  169. J. Kane, M. Inan, and R.F. Saraf: Self-assembled nanoparticle necklaces network showing single-electron switching at room temperature and biogating current by living microorganisms. ACS Nano 4(1), 317 (2010).

    CAS  Google Scholar 

  170. I.C. Bonzani, J.H. George, and M.M. Stevens: Novel materials for bone and cartilage regeneration. Curr. Opin. Chem. Biol. 10(6), 568 (2006).

    CAS  Google Scholar 

  171. Q.P. Pham, U. Sharma, and A.G. Mikos: Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Eng. 12(5), 1197 (2006).

    CAS  Google Scholar 

  172. B.C. Wang, Y.Z. Wang, T.Y. Yin, and Q.S. Yu: Applications of electrospinning technique in drug delivery. Chem. Eng. Commun. 197(10), 1315 (2010).

    CAS  Google Scholar 

  173. D.A. Brafman: Constructing stem cell microenvironments using bioengineering approaches. Physiol. Genomics 45(23), 1123 (2013).

    CAS  Google Scholar 

  174. Y.B. Zhang, J.P. Small, W.V. Pontius, and P. Kim: Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett. 86(7), 073104 (2005).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This review was made possible by an EPSRC Manufacturing Fellowship “Additive nanomanufacturing via probe-based pick-and-place nanoparticle assembly,” Grant EP/J018694/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bhaskaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engstrom, D.S., Porter, B., Pacios, M. et al. Additive nanomanufacturing — A review. Journal of Materials Research 29, 1792–1816 (2014). https://doi.org/10.1557/jmr.2014.159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.159

Navigation