Skip to main content
Log in

Cathodoluminescence characterization of ZnO nanorods synthesized by chemical solution and of its conversion to ellipsoidal morphology

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A facile and reproducible low-temperature (80 °C) solution route has been introduced to synthesize ZnO ellipsoids on silicon substrate without any pretreatment of the substrate or organic/inorganic additives. Scanning electron microscopy, transmission electron microscopy, and x-ray diffraction spectroscopy are performed to analyze the structural evolution, the single crystalline nature, and growth orientation at different stages of the synthetic process. The sequential formation mechanisms of heterogeneous nucleation in primary and secondary crystal growth behaviors have been discussed in detail. The presented results reveal that the morphology of micro/nanostructures with desired features can be optimized. The optical properties of grown structures at different stages were investigated using cathodoluminescence (CL). The monochromatic CL images were recorded to examine the UV and visible band emission contributions from the different positions of the intermediate and final structures of the individual ZnO ellipsoid. Significant enhancement in the defect level emission intensity at the central position of the structure reveals that the quality of the material improves as the reaction time is extended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. J. Kido, M. Kimura, and K. Nagai: Multilayer white light-emitting organic electroluminescent device. Science 267, 1332 (1995).

    Article  CAS  Google Scholar 

  2. M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner: Demonstration of a spaser-based nanolaser. Nature 460, 1110 (2009).

    Article  CAS  Google Scholar 

  3. M. Israr-Qadir, S. Jamil-Rana, O. Nur, M. Willander, L.A. Larsson, and P.O. Holtz: Fabrication of ZnO nanodisks from structural transformation of ZnO nanorods through natural oxidation and their emission characteristics. Ceram. Int. 40, 2435 (2014).

    Article  CAS  Google Scholar 

  4. J. Zeng, Q. Zhang, J. Chen, and Y. Xia: A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett. 10, 30 (2010).

    Article  CAS  Google Scholar 

  5. F. D’Souza and O. Ito: Supramolecular donor-acceptor hybrids of porphyrins/phthalocyanines with fullerenes/carbon nanotubes: Electron transfer, sensing, switching, and catalytic applications. Chem. Commun. 33, 4913 (2009).

    Article  Google Scholar 

  6. P-C. Chen, S. Sukcharoenchoke, K. Ryu, L. Gomez de Arco, A. Badmaev, C. Wang, and C. Zhou: 2,4,6-trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires. Adv. Mater. 22, 1900 (2010).

    Article  CAS  Google Scholar 

  7. J.L. Johnson, A. Behnam, S.J. Pearton, and A. Ural: Hydrogen sensing using Pd-functionalized multi-layer graphene nanoribbon networks. Adv. Mater. 22, 4877 (2010).

    Article  CAS  Google Scholar 

  8. P.H. Seeberger and D.B. Werz: Synthesis and medical applications of oligosaccharides. Nature 446, 1046 (2007).

    Article  CAS  Google Scholar 

  9. Y.Y. Li, F. Cunin, J.R. Link, T. Gao, R.E. Betts, S.H. Reiver, V. Chin, S.N. Bhatia, and M.J. Sailor: Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 299, 2045 (2003).

    Article  CAS  Google Scholar 

  10. L. Schmidt-Mende and J.L. MacManus-Driscoll: ZnO — nanostructures, defects, and device. Mater. Today 10, 40 (2007).

    Article  CAS  Google Scholar 

  11. Y. Qin, X. Wang, and Z.L. Wang: Microfibre-nanowire hybrid structure for energy scavenging. Nature 451, 809 (2008).

    Article  CAS  Google Scholar 

  12. Y. Qin, R. Yang, and Z.L. Wang: Growth of horizontal ZnO nanowire arrays on any substrate. J. Phys. Chem. C 112, 18734 (2008).

    Article  CAS  Google Scholar 

  13. S.H. Lee, T. Minegishi, J.S. Park, S.H. Park, J-S. Ha, H-J. Lee, H-J. Lee, S. Ahn, J. Kim, H. Jeon, and T. Yao: Ordered arrays of ZnO nanorods grown on periodically polarity-inverted surfaces. Nano Lett. 8, 2419 (2008).

    Article  CAS  Google Scholar 

  14. J.R. Morber, Y. Ding, M.S. Haluska, Y. Li, J.P. Liu, Z.L. Wang, and R.L. Snyder: PLD-assisted VLS growth of aligned ferrite nanorods, nanowires, and nanobelts-synthesis, and properties. J. Phys. Chem. B 110, 21672 (2006).

    Article  CAS  Google Scholar 

  15. X.Y. Kong and Z.L. Wang: Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 3, 1625 (2003).

    Article  CAS  Google Scholar 

  16. J.Y. Lao, J.Y. Huang, D.Z. Wang, and Z.F. Ren: ZnO nanobridges and nanonails. Nano Lett. 3, 235 (2003).

    Article  CAS  Google Scholar 

  17. P.X. Gao and Z.L. Wang: Mesoporous polyhedral cages and shells formed by textured self-assembly of ZnO nanocrystals. J. Am. Chem. Soc. 125, 11299 (2003).

    Article  CAS  Google Scholar 

  18. M.Q. Israr, J.R. Sadaf, L.L. Yang, O. Nur, M. Willander, J. Palisaitis, and P.O.A. Persson: Trimming of aqueous chemically grown ZnO nanorods into ZnO nanotubes and their comparative optical properties. Appl. Phys. Lett. 95, 073114 (2009).

    Article  Google Scholar 

  19. S.P. Garcia and S. Semancik: Controlling the morphology of zinc oxide nanorods crystallized from aqueous solutions: The effect of crystal growth modifiers on aspect ratio. Chem. Mater. 19, 4016 (2007).

    Article  CAS  Google Scholar 

  20. J.R. Sadaf, M.Q. Israr, S. Kishwar, O. Nur, and M. Willander: White electroluminescence using ZnO nanotubes/GaN heterostructure light-emitting diode. Nanoscale Res. Lett. 5, 957 (2010).

    Article  CAS  Google Scholar 

  21. X. Duan, Y. Huang, R. Agarwal, and C.M. Lieber: Single-nanowire electrically driven lasers. Nature 421, 241 (2003).

    Article  CAS  Google Scholar 

  22. T.S. Ahmadi, Z.L. Wang, T.C. Green, A. Henglein, and M.A. El-Sayed: Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924 (1996).

    Article  CAS  Google Scholar 

  23. C. Wang, M. Waje, X. Wang, J.M. Tang, and R.C. Haddon: Proton exchange fuel cells with carbon nanotube based electrodes. Nano Lett. 4, 345 (2004).

    Article  CAS  Google Scholar 

  24. J. Liu, X. Huang, K.M. Sulieman, F. Sun, and X. He: Solution-based growth and optical properties of self-assembled monocrystalline ZnO ellipsoids. J. Phys. Chem. B 110, 10612 (2006).

    Article  CAS  Google Scholar 

  25. Y. Zeng, T. Zhang, W. Fu, Q. Yu, G. Wang, Y. Zhang, Y. Sui, L. Wang, C. Shao, Y. Liu, H. Yang, and G. Zou: Fabrication and optical properties of large-scale nutlike ZnO microcrystals via a low-temperature hydrothermal route. J. Phys. Chem. C 113, 8016 (2009).

    Article  CAS  Google Scholar 

  26. B. Liu and H.C. Zeng: Hollow ZnO microspheres with complex nanobuilding units. Chem. Mater. 19, 5824 (2007).

    Article  CAS  Google Scholar 

  27. A.S. Myerson: Handbook of Industrial Crystallization, 2nd ed.; Butterworth-Heinemann: Boston, 2001; p. 45.

    Google Scholar 

  28. D. Turnbull and B. Vonnegut: Nucleation catalysis. Ind. Eng. Chem. 44, 1292 (1952).

    Article  CAS  Google Scholar 

  29. B.G. Wang, E.W. Shi, and W.Z. Zhong: Twinning morphologies and mechanisms of ZnO crystallites under hydrothermal conditions. Cryst. Res. Technol. 33, 937 (1998).

    Article  CAS  Google Scholar 

  30. P. Jiang, J-J. Zhou, H-F. Fang, C-Y. Wang, Z.L. Wang, and S-S. Xie: Hierarchical shelled ZnO structures made of bunched nanowire arrays. Adv. Funct. Mater. 17, 1303 (2007).

    Article  CAS  Google Scholar 

  31. Y-F. Gao, H-Y. Miao, H-J. Luo, M. Nagai, and J-J. Shyue: Morphological and crystallographic transformation of ZnO in solution. J. Phys. Chem. C 112, 1498 (2008).

    Article  CAS  Google Scholar 

  32. S. Jamil-Rana, M. Israr-Qadir, O. Nur, and M. Willander: Naturally oxidized synthesis of ZnO dahlia-flower nanoarchitecture. Ceram. Int. 40, 13667 (2014).

    Article  CAS  Google Scholar 

  33. D-F. Zhang, L-D. Sun, J. Zhang, Z-G. Yan, and C-H. Yan: Hierarchical construction of ZnO architectures promoted by heterogeneous nucleation. Cryst. Growth Des. 8, 3609 (2008).

    Article  CAS  Google Scholar 

  34. A.B. Djurišić, Y.H. Leung, K.H. Tam, Y.F. Hsu, L. Ding, W.K. Ge, Y.C. Zhong, K.S. Wong, W.K. Chan, H.L. Tam, K.W. Cheah, W.M. Kwok, and D.L. Phillips: Defect emissions in ZnO nanostructures. Nanotechnology 18, 095702 (2007).

    Article  Google Scholar 

  35. B. Panigrahy, M. Aslam, D.S. Misra, M. Ghosh, and D. Bahadur: Defect-related emissions and magnetization properties of ZnO nanorods. Adv. Funct. Mater. 20, 1161 (2010).

    Article  CAS  Google Scholar 

  36. M. Willander, M.Q. Israr, S.J. Rana, and O. Nur: Progress on one-dimensional zinc oxide nanomaterials based photonic devices. Nanophotonics 1, 99 (2012).

    Article  CAS  Google Scholar 

  37. C. Klingshirn: ZnO: From basics towards applications. Phys. Status Solidi B 244, 3027 (2007).

    Article  CAS  Google Scholar 

  38. Q.X. Zhao, P. Klason, M. Willander, H.M. Zhong, W. Lu, and J.H. Yang: Deep-level emissions influenced by O and Zn implantations in ZnO. Appl. Phys. Lett. 87, 211912 (2005).

    Article  Google Scholar 

  39. Y. Sun, G.M. Fuge, N.A. Fox, D.J. Riley, and M.N.R. Ashfold: Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film. Adv. Mater. 17, 2477 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are humbly grateful to Prof. Le Si Dang from the Institut Néel-CNRS, Grenoble, France, for his help regarding cathodoluminescence measurements. The authors also acknowledge the financial support from the Higher Education Commission (HEC), Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Israr-Qadir or Sadaf Jamil-Rana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Israr-Qadir, M., Jamil-Rana, S., Nur, O. et al. Cathodoluminescence characterization of ZnO nanorods synthesized by chemical solution and of its conversion to ellipsoidal morphology. Journal of Materials Research 29, 2425–2431 (2014). https://doi.org/10.1557/jmr.2014.242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.242

Navigation