Skip to main content

Advertisement

Log in

Benchmarking spintronic logic devices based on magnetoelectric oxides

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Active research is ongoing in logic devices beyond complementary metal–oxide–semiconductor electronics. One of the most promising classes of such devices is spintronic/nanomagnetic devices. Switching of magnetization by spin torque (ST) demonstrated in spintronic devices results in relatively high switching energy. An attractive option for lowering switching energy is magnetoelectric (ME) switching achieved by placing other materials (mostly oxides) adjacent to ferromagnets. We review recent experiments on ME switching, classify them according to the ME phenomena into surface anisotropy, exchange bias, and magnetostrictive, and compare switching parameters for these classes. Then, we perform micromagnetic simulations of switching by the effective ME field of both stand-alone nanomagnets and spintronic interconnects. We determine the threshold values of ME field for switching and the resulting switching time. These switching requirements are incorporated into the previously developed benchmarking framework for spintronic logic devices and circuits. We conclude that ME switching results in 1 to 2 orders of magnitude improvement of switching energy and several time improvement of switching delay compared with ST switching across various schemes of spin logic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. G.E. Moore: Cramming more components onto integrated circuits. Electronics 38(8), 114 (1965).

    Google Scholar 

  2. International Technology Roadmap for Semiconductors, 2011. [Online]. Available: http://www.itrs.net/.

  3. K. Bernstein, R.K. Cavin III, W. Porod, A. Seabaugh, and J. Welser: Device and architecture outlook for beyond-CMOS switches. Proc. IEEE 98(12), 2169–2184 (2010).

    Article  Google Scholar 

  4. I. Zutic, J. Fabian, and S. Das Sarma: Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  CAS  Google Scholar 

  5. D.E. Nikonov and G.I. Bourianoff: Operation and modeling of semiconductor spintronics computing devices. J. Supercond. Novel Magn. 21(8), 479–493 (2008).

    Article  CAS  Google Scholar 

  6. D. Nikonov and I. Young: Uniform methodology for benchmarking beyond-CMOS logic devices. In Proceedings of IEDM (IEEE, Piscataway, NJ, 2012); p. 25.4.

    Google Scholar 

  7. D.E. Nikonov and I.A. Young: Overview of beyond-CMOS devices and a uniform methodology for their benchmarking. Proc. IEEE 101, 2498–2533 (2013).

    Article  CAS  Google Scholar 

  8. N. Locatelli, V. Cros, and J. Grollier: Spin-torque building blocks. Nat. Mater. 13, 11 (2014).

    Article  CAS  Google Scholar 

  9. M. Fiebig: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123–R152 (2005).

    Article  CAS  Google Scholar 

  10. S-W. Cheong and M. Mostovoy: Multiferroics: A magnetic twist for ferroelectricity. Nat. Mater. 6, 13 (2007).

    Article  CAS  Google Scholar 

  11. J. Zhai, Z. Xing, S. Dong, J. Li, and D. Viehland: Magnetoelectric laminate composites: An overview. J. Am. Ceram. Soc. 91(2), 351–358 (2008).

    Article  CAS  Google Scholar 

  12. C-W. Nan, M.I. Bichurin, S. Dong, and D. Viehland: Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).

    Article  Google Scholar 

  13. M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthelemy, and A. Fert: Tunnel junctions with multiferroic barriers. Nat. Mater. 6, 296 (2007).

    Article  CAS  Google Scholar 

  14. M. Overby, A. Chernyshov, L.P. Rokhinson, X. Liu, and J.K. Furdyna: GaMnAs-based hybrid multiferroic memory device. Appl. Phys. Lett. 92, 192501 (2008).

    Article  Google Scholar 

  15. N. Tiercelin, Y. Dusch, A. Klimov, S. Giordano, V. Preobrazhensky, and P. Pernod: Room temperature magnetoelectric memory cell using stress-mediated magnetoelastic switching in nanostructured multilayers. Appl. Phys. Lett. 99, 192507 (2011).

    Article  Google Scholar 

  16. W-G. Wang, M. Li, S. Hageman, and C.L. Chien: Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64 (2012).

    Article  CAS  Google Scholar 

  17. Y.-H. Chiu, L.W. Martin, M.B. Holcomb, M. Gajek, S.-J. Han, Q. He, N. Balke, C.-H. Yang, D. Lee, W. Hu, Q. Zhan, P.-L. Yang, A. Fraile-Rodríguez, A. Scholl, S.X. Wang, and R. Ramesh: Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478 (2008).

    Article  Google Scholar 

  18. T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, A.A. Tulapurkar, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, and Y. Suzuki: Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 4, 158 (2009).

    Article  CAS  Google Scholar 

  19. X. He, Y. Wang, N. Wu, A.N. Caruso, E. Vescovo, K.D. Belashchenko, P.A. Dowben, and C. Binek: Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579 (2010).

    Article  CAS  Google Scholar 

  20. Y. Chen, T. Fitchorov, C. Vittoria, and V.G. Harris: Electrically controlled magnetization switching in a multiferroic heterostructure. Appl. Phys. Lett. 97, 052502 (2010).

    Article  Google Scholar 

  21. T. Brintlinger, S-H. Lim, K.H. Baloch, P. Alexander, Y. Qi, J. Barry, J. Melngailis, L. Salamanca-Riba, I. Takeuchi, and J. Cumings: In situ observation of reversible nanomagnetic switching induced by electric fields. Nano Lett. 10, 1219 (2010).

    Article  CAS  Google Scholar 

  22. T.H.E. Lahtinen, J.O. Tuomi, and S. van Dijken: Electrical writing of magnetic domain patterns in ferromagnetic/ferroelectric heterostructures. IEEE Trans. Magn. 47, 3768 (2011).

    Article  CAS  Google Scholar 

  23. J.T. Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, S.Y. Yang, D.E. Nikonov, Y-H. Chu, S. Salahuddin, and R. Ramesh: Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011).

    Article  CAS  Google Scholar 

  24. T. Wu, A. Bur, P. Zhao, K.P. Mohanchandra, K. Wong, K.L. Wang, C.S. Lynch, and G.P. Carman: Giant electric-field-induced reversible and permanent magnetization reorientation on magnetoelectric Ni/(011) [Pb(Mg1/3Nb2/3)O3](1-x)–[PbTiO3]x heterostructure. Appl. Phys. Lett. 98, 012504 (2011).

    Article  Google Scholar 

  25. P. Shabadi, A. Khitun, K. Wong, P.K. Amiri, K.L. Wang, and C.A. Moritz: Spin wave functions nanofabric update. In Proceedings of IEEE/ACM International Symposium on Nanoscale Architectures, San Diego, CA, Vol. 107 (2011).

  26. T. Fitchorov, Y. Chen, B. Hu, S.M. Gillette, A. Geiler, C. Vittoria, and V.G. Harris: Tunable fringe magnetic fields induced by converse magnetoelectric coupling in a FeGa/PMN-PT multiferroic heterostructure. J. Appl. Phys. 110, 123916 (2011).

    Article  Google Scholar 

  27. Y. Shiota, T. Nozaki, F. Bonell, S. Murakami, T. Shinjo, and Y. Suzuki: Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11, 39 (2011).

    Article  Google Scholar 

  28. J. Zhu, J.A. Katine, G.E. Rowlands, Y-J. Chen, Z. Duan, J.G. Alzate, P. Upadhyaya, J. Langer, P.K. Amiri, K.L. Wang, and I.N. Krivorotov: Voltage-induced ferromagnetic resonance in magnetic tunnel junctions. Phys. Rev. Lett. 108, 197203 (2012).

    Article  Google Scholar 

  29. J.G. Alzate, P.K. Amiri, P. Upadhyaya, S.S. Cherepov, J. Zhu, M. Lewis, R. Dorrance, J.A. Katine, J. Langer, K. Galatsis, D. Markovic, I. Krivorotov, and K.L. Wang: Voltage-induced switching of nanoscale magnetic tunnel junctions. In Proceedings of IEDM, 2012; p. 29.5.

  30. A. Khan, D.E. Nikonov, S. Manipatruni, T. Ghani, and I.A. Young: Voltage induced magnetostrictive switching of nanomagnets: Strain assisted strain transfer torque random access memory. Appl. Phys. Lett. 115, 262407 (2014).

    Article  Google Scholar 

  31. D.C. Ralph and M.D. Stiles: Spin transfer torques. J. Magn. Magn. Mater. 320, 1190 (2008).

    Article  CAS  Google Scholar 

  32. D.V. Berkov and J. Miltat: Spin-torque driven magnetization dynamics: Micromagnetic modeling. J. Magn. Magn. Mater. 320, 1238 (2008).

    Article  CAS  Google Scholar 

  33. M.J. Donahue and D.G. Porter: OOMMF User’s Guide, Version 1.0, National Institute of Standards and Technology; Report No. NISTIR 6376 September, 1999.

  34. D.E. Nikonov, G.I. Bourianoff, G. Rowlands, and I.N. Krivorotov: Strategies and tolerances of spin transfer torque switching. J. Appl. Phys. 107, 113910 (2010).

    Article  Google Scholar 

  35. S. Mangin, D. Ravelosona, J.A. Katine, M.J. Carey, B.D. Terris, and E.E. Fullerton: Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat. Mater. 5, 210 (2006).

    Article  CAS  Google Scholar 

  36. D.E. Nikonov, S. Manipatruni, and I.A. Young: Automotion of domain walls for spintronic interconnects. J. Appl. Phys. 115, 213902 (2014).

    Article  Google Scholar 

  37. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).

    Article  CAS  Google Scholar 

  38. M. Beleggia, M. De Graef, Y.T. Millev, D.A. Goode, and G. Rowlands: Demagnetization factors for elliptic cylinders. J. Phys. D: Appl. Phys. 38, 33332005.

    Article  CAS  Google Scholar 

  39. International Technology Roadmap for Semiconductors, Chapter PIDS, 2011. [Online]. Available: http://www.itrs.net/.

  40. U.E. Avci, R. Rios, K. Kuhn, and I.A. Young: Comparison of performance, switching energy and process variations for the TFET and MOSFET in logic. In Proc. Very Large Scale Integr. (VLSI) Technol. Symp., 2011; pp. 124–125.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri E. Nikonov.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikonov, D.E., Young, I.A. Benchmarking spintronic logic devices based on magnetoelectric oxides. Journal of Materials Research 29, 2109–2115 (2014). https://doi.org/10.1557/jmr.2014.243

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.243

Navigation