Skip to main content
Log in

Design and operation of silver nanowire based flexible and stretchable touch sensors

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In recent years wearable devices have attracted significant attention. Flexibility and stretchability are required for comfortable wear of such devices. In this paper, we report flexible and stretchable touch sensors with two different patterns (interdigitated and diamond-shaped capacitors). The touch sensors were made of screen-printed silver nanowire electrodes embedded in polydimethylsiloxane. For each pattern, the simulation-based design was conducted to choose optimal dimensions for the highest touch sensitivity. The sensor performances were characterized as-fabricated and under deformation (e.g., bending and stretching). While the interdigitated touch sensors were easier to fabricate, the diamond-shaped ones showed higher touch sensitivity under as-fabricated, stretching or even bending conditions. For both types of sensors, the touch sensitivity remained nearly constant under stretching up to 15%, but varied under bending. They also showed robust performances under cyclic loading and against oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. D.S. Hecht, D. Thomas, L. Hu, C. Ladous, T. Lam, Y. Park, G. Irvin, and P. Drzaic: Carbon-nanotube film on plastic as transparent electrode for resistive touch screens. J. Soc. Inf. Disp. 17(11), 941 (2009).

    Article  CAS  Google Scholar 

  2. S.P. Hotelling and B.R. Land: Double-sided touch-sensitive panel with shield and drive combined layer. U.S. Patent No. 11/650,182, 2011.

  3. R. Adler and P.J. Desmares: An economical touch panel using SAW absorption. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34(2), 195 (1987).

    Article  CAS  Google Scholar 

  4. S.H. Bae, B.C. Yu, S. Lee, H.U. Jang, J. Choi, M. Sohn, I. Ahn, I. Kang, and I. Chung: 14.4: Integrating Multi-Touch Function with a Large-Sized LCD, SID Symp. Dig. of Tech. Pap. 39,(1), Los Angeles, CA, 178 (2008).

    Article  Google Scholar 

  5. G. Barrett and R. Omote: Projected-capacitive touch technology. Inf. Disp. 26(3), 16 (2010).

    Google Scholar 

  6. D.S. Hecht, L. Hu, and G. Irvin: Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23(13), 1482 (2011).

    Article  CAS  Google Scholar 

  7. J. Zhang, Y. Fu, C. Wang, P-C. Chen, Z. Liu, W. Wei, C. Wu, M.E. Thompson, and C. Zhou: Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays. Nano Lett. 11(11), 4852 (2011).

    Article  CAS  Google Scholar 

  8. D.J. Lipomi, M. Vosgueritchian, B.C. Tee, S.L. Hellstrom, J.A. Lee, C.H. Fox, and Z. Bao: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6(12), 788 (2011).

    Article  CAS  Google Scholar 

  9. Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, and A.F. Hebard: Transparent, conductive carbon nanotube films. Science 305(5688), 1273 (2004).

    Article  CAS  Google Scholar 

  10. V.C. Tung, M.J. Allen, Y. Yang, and R.B. Kaner: High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4(1), 25 (2008).

    Article  Google Scholar 

  11. G. Eda, G. Fanchini, and M. Chhowalla: Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270 (2008).

    Article  CAS  Google Scholar 

  12. J. Wu, M. Agrawal, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans: Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4(1), 43 (2009).

    Article  Google Scholar 

  13. J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M.J. Buehler, and X. Zhao: Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 12(4), 321 (2013).

    Article  CAS  Google Scholar 

  14. L. Hu, H.S. Kim, J-Y. Lee, P. Peumans, and Y. Cui: Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4(5), 2955 (2010).

    Article  CAS  Google Scholar 

  15. J. Wu, J. Zang, A.R. Rathmell, X. Zhao, and B.J. Wiley: Reversible sliding in networks of nanowires. Nano Lett. 13(6), 2381 (2013).

    Article  CAS  Google Scholar 

  16. Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu, and Q. Pei: Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 23(5), 664 (2011).

    Article  CAS  Google Scholar 

  17. D-H. Kim, N. Lu, Y. Huang, and J.A. Rogers: Materials for stretchable electronics in bioinspired and biointegrated devices. MRS Bull. 37(03), 226 (2012).

    Article  CAS  Google Scholar 

  18. S.P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo: Stretchable interconnects for elastic electronic surfaces. Proc. IEEE 93(8), 1459 (2005).

    Article  CAS  Google Scholar 

  19. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, and S. Bauer-Gogonea: An ultra-lightweight design for imperceptible plastic electronics. Nature 499(7459), 458 (2013).

    Article  CAS  Google Scholar 

  20. D.H. Kim, J. Xiao, J. Song, Y. Huang, and J.A. Rogers: Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22(19), 2108 (2010).

    Article  CAS  Google Scholar 

  21. S. Yao and Y. Zhu: Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6(4), 2345 (2014).

    Article  CAS  Google Scholar 

  22. W. Hu, X. Niu, R. Zhao, and Q. Pei: Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Appl. Phys. Lett. 102(8), 083303 (2013).

    Article  Google Scholar 

  23. D.P. Cotton, I.M. Graz, and S.P. Lacour: A multifunctional capacitive sensor for stretchable electronic skins. IEEE Sens. J. 9(12), 2008 (2009).

    Article  Google Scholar 

  24. B.S. Kim, H.J. Hong, and C.K. Koo: Electrode pattern of touch panel and forming method for the same. U.S. Patent No. Application 13/711,210, 2012.

  25. J. Lee, M.T. Cole, J.C.S. Lai, and A. Nathan: An analysis of electrode patterns in capacitive touch screen panels. J. Disp. Technol. 10(5), 362 (2014).

    Article  Google Scholar 

  26. H. Hammer: Analytical model for comb-capacitance fringe fields. J. Microelectromech. Syst. 19(1), 175 (2010).

    Article  Google Scholar 

  27. T-H. Hwang, W-H. Cui, I-S. Yang, and O-K. Kwon: A highly area-efficient controller for capacitive touch screen panel systems. IEEE Trans. Consum. Electron. 56(2), 1115 (2010).

    Article  Google Scholar 

  28. F. Xu and Y. Zhu: Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 24(37), 5117 (2012).

    Article  CAS  Google Scholar 

  29. L. Song, A.C. Myers, J.J. Adams, Y. Zhu: Stretchable, and reversibly deformable radio frequency antennas based on silver nanowires. ACS Appl. Mater. Interfaces 6(6), 4248 (2014).

    Article  CAS  Google Scholar 

  30. X. Zhang, W.N. Wong, and M.M. Yuen: Conductive, transparent, flexible electrode from silver nanowire thin film with double layer structure. In Nanotechnology (IEEE-NANO), 2012 12th IEEE Conference on. Birmingham, UK, IEEE (2012).

    Google Scholar 

  31. W.J. Lee, M.Y. Lee, A.K. Roy, K.S. Lee, S.Y. Park, and I. In: Poly(dimethylsiloxane)-protected silver nanowire network for transparent conductor with enhanced oxidation resistance and adhesion properties. Chem. Lett. 42(2), 191 (2013).

    Article  CAS  Google Scholar 

  32. T. Kim, Y.W. Kim, H.S. Lee, H. Kim, W.S. Yang, and K.S. Suh: Uniformly interconnected silver-nanowire networks for transparent film heaters. Adv. Funct. Mater. 23(10), 1250 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was supported in part by the National Science Foundation through the ASSIST Engineering Research Center at NCSU (EEC-1160483).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Poblete, F.R., Cheng, G. et al. Design and operation of silver nanowire based flexible and stretchable touch sensors. Journal of Materials Research 30, 79–85 (2015). https://doi.org/10.1557/jmr.2014.347

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.347

Navigation